WWW.DISS.SELUK.RU

БЕСПЛАТНАЯ ЭЛЕКТРОННАЯ БИБЛИОТЕКА
(Авторефераты, диссертации, методички, учебные программы, монографии)

 

Pages:   || 2 | 3 | 4 |

«Кафедра Автоматизированной обработки информации ЛЕКЦИИ ПО ДИСЦИПЛИНЕ Математическая теория планирования эксперимента Учебное пособие Составитель: ст. пр. Астахова Л.Г. ВЛАДИКАВКАЗ, 2013 1 ...»

-- [ Страница 1 ] --

ФЕДЕРАЛЬНОЕ АГЕНТСТВО ПО ОБРАЗОВАНИЮ

СЕВЕРО-КАВКАЗСКИЙ ГОРНО-МЕТАЛЛУРГИЧЕСКИЙ ИНСТИТУТ

(ГОСУДАРСТВЕННЫЙ ТЕХНОЛОГИЧЕСКИЙ УНИВЕРСИТЕТ)

Кафедра Автоматизированной обработки информации

ЛЕКЦИИ

ПО ДИСЦИПЛИНЕ

«Математическая теория планирования эксперимента»

Учебное пособие

Составитель: ст. пр. Астахова Л.Г.

ВЛАДИКАВКАЗ, 2013 1 Содержание.

Лекция 1. Основные понятия и определения…………………………………………...…..3 Лекция 2. Критерии оптимальности и типы планов. Параметр оптимизации………….14 Лекция 3. Градиентные методы оптимизации………………………..……………...……22 Лекция 4. Принятие решений перед планированием эксперимента. Матричный подход к регрессионному анализу. Метод наименьших квадратов для одного фактора…………. Лекция 5. Полный факторный эксперимент типа 2к………………..……………………. Лекция 6. Дробный факторный эксперимент………………………………..…………… Лекция 7. Оценки коэффициентов функции отклика в дробном факторном эксперименте. Выбор оптимальных условий эксперимента………………….…………… Лекция 8. Ортогональное композиционное планирование второго порядка.

Рототабельный центральный композиционный план……………………………………..... Лекция 1. Основные понятия и определения Теория ПЭ охватывает практически все встречающиеся на практике варианты исследования объектов. В дальнейшем будут рассмотрены следующие типовые задачи экспериментального исследования:

поиск значений параметров системы, обеспечивающих достижение оптимального значения показателя качества исследуемого объекта при известных ограничениях на значения этих параметров. Перебор всех допустимых сочетаний значений параметров системы с целью поиска оптимального варианта нерационален по затратам ресурсов. Для решения указанной задачи ТПЭ предлагает такую последовательность проведения опытов, которая позволяет применить градиентные методы поиска при априорно неизвестной функции, связывающей показатель качества с параметрами системы;

приближенное аналитическое описание функциональной связи показателей качества с параметрами системы по результатам проведенного эксперимента.





Традиционные методики проведения экспериментов из-за зависимости компонентов восстанавливаемого аналитического описания не позволяют определить раздельное влияние каждого фактора на результирующий показатель, т. е. эти методики обеспечивают получение аналитических зависимостей, пригодных лишь для решения интерполяционных задач. В отличие от них ТПЭ дает возможность оценить вклад каждого параметра в значение показателя, т.е. приближенно восстановить закон функционирования объекта по экспериментальным данным. Полученное аналитическое описание объекта можно использовать для предварительного исследования вариантов построения системы или в интересах построения модели старшей системы, включающей данный объект на правах элемента;

оценка дифференциального влияния уровней параметров системы на показатель качества. Такая задача возникает в случае, когда параметры системы являются по своей природе качественными или когда количественные параметры могут принимать небольшое число различных значений.

Кроме указанных, существуют и других задачи, решаемые с помощью ТПЭ, например:

испытания образцов техники. Планирование должно позволить оценить степень соответствия показателей качества образцов заданным требованиям при минимальном объеме испытаний;

отсеивающие эксперименты. Предназначены выявить параметры, незначительно влияющие на показатель качества системы. Соответствующие планы применяют на начальных этапах исследования, когда нет конкретных сведений о влиянии тех или иных параметров. Отсеивание несущественных факторов снижает трудоемкость решения задач оптимизации или приближенного аналитического описания системы;

адаптивное планирование. Применяется в условиях управления технологическим процессом, когда система управления все время должна приспосабливаться к конкретным условиям функционирования, а возможно, и предсказывать дальнейшее развитие процесса.

Решение задач с применением ТПЭ предусматривает использование априорной информации об изучаемом процессе для выбора общей последовательности управления экспериментами, которая уточняется после очередного этапа проведения исследований на основе вновь полученных сведений. Тем самым достигается возможность рационального управления экспериментами при неполном первоначальном знании характеристик исследуемого объекта. Целесообразность применения ТПЭ тем выше, чем сложнее исследуемая система.

В ТПЭ исследуемый объект (реальный объект, модель объекта) рассматривается как "черный ящик", имеющий входы v (управляемые независимые параметры) и выходы y [3, 6].

Переменные v принято называть факторами. Теория ПЭ изучает только активный тип экспериментов, когда имеется возможность независимо и целенаправленно менять значения факторов v во всем требуемом диапазоне. Факторы в эксперименте бывают качественными и количественными. Качественные факторы можно квантифицировать или приписать им числовые обозначения, тем самым перейти к количественным значениям. В дальнейшем будем считать, что все факторы являются количественными и представлены непрерывными величинами (если другое не оговорено особо).

Переменным v можно сопоставить геометрическое понятие факторного пространства – пространства, координатные оси которого соответствуют значениям факторов.





Совокупность конкретных значений всех факторов образует точку в многомерном факторном пространстве. Примерами факторов являются: интенсивность потока запросов к базе данных, скорость передачи данных по каналу, объем запоминающего устройств. Кроме того, на объект воздействуют возмущающие факторы, они являются случайными и не поддаются управлению.

Область планирования задается интервалами возможного изменения факторов vi,min vi vi,max для i =1, 2, …, k, где k – количество факторов. В теории ПЭ часто используют нормализацию факторов, т.е. преобразование натуральных значений факторов в безразмерные (кодированные) величины. Переход к безразмерным значениям xi задается преобразованием где vi – натуральное значение фактора, vi0 – натуральное значение основного уровня фактора, соответствующее нулю в безразмерной шкале, Dvi – интервал варьирования.

Совокупность основных уровней всех факторов представляет собой точку в пространстве параметров, называемую центральной точкой плана или центром эксперимента. С геометрической точки зрения нормализация факторов равноценна линейному преобразованию пространства факторов, при котором проводятся две операции: перенос начала координат в точку, соответствующую значениям основных уровней факторов;

сжатие – растяжение пространства в направлении координатных осей.

Активный эксперимент включает: систему воздействий, при которых воспроизводится функционирование объекта; регистрацию отклика объекта. План эксперимента задает совокупность данных, определяющих количество, условия и порядок реализации опытов. Опыт составляет элементарную часть эксперимента и предусматривает воспроизведение исследуемого явления в конкретных условиях с последующей регистрацией результата. В условиях случайности в одних и тех же условиях проводятся параллельные (повторные) опыты в интересах получения статистически устойчивых результатов. Опыт u предполагает задание конкретных значений факторам v u = v1u, v2u, …, vku, а совокупность значений факторов во всех N точках плана эксперимента образует матрицу плана Строки матрицы соответствуют опытам, столбцы – факторам, элемент матрицы viz задает значение z-го фактора в i-м опыте.

Вектор y называется откликом. В ТПЭ обычно изучается ситуация, в которой вектор отклика y состоит из одного элемента y. При наличии нескольких составляющих вектора y, каждую из них можно исследовать отдельно. Зависимость отклика от факторов носит название функции отклика, а геометрическое представление функции отклика – поверхности отклика. Функция отклика рассматривается как показатель качества или эффективности объекта. Этот показатель является функцией от параметров – факторов. На практике широкое распространение получили простые функции вида М{y'} = bf(v), где b=(b0, b1, …, bh) – вектор неизвестных параметров модели размерности h+1, f(v)=(f0(v), f1(v), …, fh(v)) – вектор заданных базисных функций, М{y'} – математическое ожидание функции отклика. Такое представление функции отклика соответствует линейной по параметрам модели регрессионного анализа, т.е. функция отклика есть линейная комбинация базисных функций от факторов.

Вследствие влияния на результаты экспериментов случайных воздействий истинные значения коэффициентов можно определить только приближенно. Оценку = (0, 1, …, h) вектора неизвестных параметров b находят по результатам экспериментов, в ходе которых получают значения yu при заданных значениях факторов vu. Эти оценки обычно рассчитываются с помощью метода наименьших квадратов (МНК) на основе выборок значений факторов и откликов системы на воздействия [8]. В качестве оценки вектора b выбирается такое значение, которое минимизирует где y u – вычисленное на модели значение функции отклика в u-й точке факторного пространства. Приравнивая нулю частные производные от данной квадратичной формы, взятые по переменным b0, b1, …, bh, можно получить систему уравнений вида где i= 0, 1, 2, …, h. Значение b находят путем решения этой системы уравнений.

Решение системы возможно при линейной независимости базисных функций.

Если не принимать специальных мер, то оценки коэффициентов станут взаимозависимыми, и полученное выражение для функции отклика можно рассматривать только как интерполяционную формулу, что затрудняет ее физическую интерпретацию и последующие расчеты. Однако, формируя специальным образом матрицу плана, можно получить независимые значения. И эти величины будут характеризовать вклад каждого фактора в значение функции отклика.

Итак, задача заключается в определении общей формы записи функции отклика y'.

В большинстве случаев вид этой функции, получаемый из теоретических соображений, является сложным для практического применения, а при неполном знании объекта вообще неизвестен. По данным причинам функцию целесообразно представить в универсальном, удобном для практического применения виде, чему соответствует представление в виде полинома. Тогда системой базисных функций является совокупность степенных функций с целыми неотрицательными значениями показателей степени. Полиномиальная форма представления функции отклика примет вид y' = 0 + 1x1 + …+ kxk + 12x1x2 + 13x1x3+… +k–1,k xk–1xk + +11x21 + …+kkx2k + … +, где– случайная величина, характеризующая ошибку опыта.

Такая функция отклика линейна относительно неизвестных коэффициентов и будет полностью определена, если заданы степень полинома и коэффициенты. Степень полинома обычно задается исследователем априорно и уточняется в ходе исследования.

На практике наибольшее распространение получили полиномы первого и второго порядка, соответственно линейные и квадратичные модели. Коэффициенты полинома принято называть эффектами факторов.

Иногда функцию отклика целесообразно представить в другом виде, например, в виде степенной функции, так как достижение заданной точности требует применения полинома высокого порядка. Однако использование функций, нелинейных относительно неизвестных параметров, усложняет вычисления, затрудняет оценку их свойств. В некоторых случаях задачу можно упростить путем искусственного преобразования нелинейной функции в линейную. При этом требуется соответствующее преобразование и результатов экспериментов.

Применение ТПЭ основано на ряде допущений, а именно [2, 6]:

функция отклика содержит в своем составе неслучайную и случайную составляющую. Многие показатели качества автоматизированных систем обработки информации носят случайный характер. Это требует многократного повторения опытов в одних и тех же условиях в целях получения статистически устойчивых результатов, а получаемые оценки показателей должны обладать свойствами состоятельности, эффективности, несмещенности и достаточности. Оценки типовых показателей формируются путем усреднения результатов наблюдений. Поэтому при достаточно большом количестве наблюдений можно считать, что случайная составляющая e распределена по нормальному закону с нулевым математическим ожиданием, что позволяет получить несмещенную оценку математического ожидания функции отклика в конкретной точке плана. Будем также считать, что величина e имеет дисперсию, не зависящую от значений факторов. Иначе говоря, результаты, полученные путем усреднения повторных опытов в каждой точке плана, представляют собой независимые, нормально распределенные случайные величины;

факторы v1, v2, …, vk измеряются с пренебрежимо малой ошибкой по сравнению с ошибкой в определении величины y (учет помех в задании факторов приводит к трудно разрешимым проблемам в оценке коэффициентов функции отклика). Ошибка в определении значения функции отклика объясняется не столько погрешностью измерений, сколько влиянием на результат работы системы неучтенных или случайных факторов, например различиями в формируемой последовательности случайных чисел при статистическом моделировании;

дисперсии среднего значения функции отклика в различных точках равны друг другу (выборочные оценки дисперсии однородны). Это означает, что при многократных повторных наблюдениях над величиной yu при некотором наборе значений v1u, v2u, …, vku, получаемая оценка дисперсии среднего значения не будет отличаться от оценки дисперсии, полученной при многократных наблюдениях для любого другого набора значений независимых переменных v1s, v2s, …, vks.

Указанные допущения позволяют использовать для расчетов коэффициентов полинома МНК, который дает эффективные и несмещенные оценки коэффициентов и обеспечивает простоту проведения самих расчетов. Применение МНК, вообще говоря, не требует соблюдения нормального распределения результатов наблюдения. Этот метод в любом случае дает решение, минимизирующее сумму квадратов отклонений результатов наблюдения от значений функции отклика. Допущение о нормальном распределении используется при проведении различного рода проверок, например, при проверке адекватности функции отклика и экспериментальных данных. Естественно, что точность оценок коэффициентов функции отклика повышается с увеличением числа опытов, по которым вычисляются коэффициенты.

Мысль о том, что эксперимент можно планировать, восходит к глубокой древности.

Наш далекий предок, убедившийся, что острым камнем можно убить даже мамонта, несомненно выдвигал гипотезы, которые после целенаправленной экспериментальной проверки привели к созданию копья, дротика, а затем и лука со стрелами.

Он, однако, не пользовался статистическими методами, поэтому остается непонятным, как он вообще выжил и обеспечил тем самым наше существование.

Только в начале нашего века люди, наконец, поняли, что дальше дело так не пойдет, и придумали статистические методы планирования эксперимента. Честь открытия этой идеи принадлежит английскому статистику Рональду Фишеру (конец двадцатых годов), который впервые показал целесообразность одновременного варьирования всеми факторами в противовес широко распространенному однофакторному эксперименту. Понадобилось еще несколько десятилетий, чтобы в начале пятидесятых годов появилось новое направление в планировании эксперимента, связанное с оптимизацией процессов, – планирование экстремального эксперимента.

Первая работа в этой области была опубликована в 1951 г. Боксом и Уилсоном в Англии.

Идея метода Бокса–Уилсона крайне проста. Экспериментатору предлагается ставить последовательные небольшие серии опытов, в каждой из которых одновременно варьируются по определенным правилам все факторы. Серии организуются таким образом, чтобы после математической обработки предыдущей можно было выбрать условия проведения (т.е. спланировать) следующую серию. Так последовательно, шаг за шагом, достигается область оптимума.

Применение планирования эксперимента делает поведение экспериментатора целенаправленным и организованным, существенно способствует повышению производительности его труда и надежности полученных результатов. Важным достоинствомметода является его универсальность, пригодность в огромном большинстве областей исследования, интересующих современного человека. В нашей стране планирование эксперимента развивается с 1960 г. под руководством В. В.

Налимова.

Интерес исследователей к планированию эксперимента вполне понятен:

перспектива сократить число опытов, найти оптимум, получить количественные оценки влияния факторов п определить ошибки – крайне привлекательна.

Но, когда экспериментатор делает попытку познакомиться с планированием эксперимента, он часто сталкивается с серьезными трудностями. Больше того, иногда он просто неверно применяет методы планирования или выбирает не самый оптимальный для данной ситуации путь исследования, или допускает еще какие–нибудь досадные ошибки. При этом снижается эффективность его работы и появляется опасность дискредитации важного и полезного направления.

Большинство научных исследований связано с экспериментом. Он проводится в лабораториях, на производстве, на опытных полях и участках, в клиниках и т.д.

Эксперимент может быть физическим, психологическим или модельным. Он может непосредственно проводиться на объекте или на его модели. Модель обычно отличается от объекта масштабом, а иногда природой.

Как вы считаете, можно ли поставить эксперимент на абстрактной математической модели?

Если модель достаточно точно описывает объект, то эксперимент на объекте может быть заменен экспериментом на модели. В последнее время наряду с физическими моделями все большее распространение получают абстрактные математические модели.

Можно получать новые сведения об объекте, экспериментируя на модели, если она достаточно точно описывает объект.

Эксперимент занимает центральное место в науке. Однако возникает вопрос, насколько эффективно он используется. Джон Бернал, например, отмечал, что научные исследования организуются и проводятся настолько хаотично, что их коэффициент полезного действия может быть оценен величиной порядка 2%. Для того чтобы повысить эффективность исследований, требуется нечто совершенно новое. Одним из возможных путей является применение математических методов, построение математической теории планирования эксперимента.

Планирование эксперимента – это процедура выбора числа и условий проведения опытов, необходимых и достаточных для решения поставленной задачи с требуемой точностью. При этом существенно следующее:

стремление к минимизации общего числа опытов;

одновременное варьирование всеми переменными, определяющими процесс, по специальным правилам – алгоритмам;

использование математического аппарата, формализующего многие действия экспериментатора;

выбор четкой стратегии, позволяющей принимать обоснованные решения после каждой серии экспериментов.

Задачи, для решения которых может использоваться планирование эксперимента, чрезвычайно разнообразны.

Поиск оптимальных условий, построение интерполяционных формул, выбор существенных факторов, оценка и уточнение констант теоретических моделей (например, кинетических), выбор наиболее приемлемых из некоторого множества гипотез о механизме явлений, исследование диаграмм состав–свойство – вот примеры задач, при решении которых применяется планирование эксперимента. Можно сказать, что там, где есть эксперимент, имеет место и наука о его проведении – планирование эксперимента.

Поиск оптимальных условий является одной из наиболее распространенных научно–технических задач. Они возникают в тот момент, когда установлена возможность проведения процесса и необходимо найти наилучшие (оптимальные в некотором смысле) условия его реализации.

Пусть, например, ухимика возникла гипотеза о том, что при взаимодействии двух веществ должен получаться некоторый интересующий его продукт. Чтобы убедиться в правильности своей гипотезы, он начинает проводить эксперимент. Возможно, что ему повезло и он получил требуемый продукт. Однако выход продукта весьма низок, скажем, 2%. Вот тут–то и возникает задача выбора оптимальных условий. Требуется так подобрать концентрации реагирующих веществ, температуру, давление, время реакции и другие факторы, чтобы сделать выход возможно более близким к 100%. В данном примере находятся условия проведения процесса, оптимальные в смысле максимизации выхода требуемого продукта. Но это далеко не единственно возможная постановка задачи. Найденные условия оказались бы другими, если бы ставилась, например, цель минимизации себестоимости продукта или минимизации количества вредных примесей.

Следует подчеркнуть, что всегда необходимо четко формулировать, в каком смысле условия должны быть оптимальными. Этим определяется выбор цели исследования.

Точная формулировка цели в значительной мере определяет успех исследования.

Задачи, сформулированные аналогичным образом, называются задачами оптимизации. Процесс их решения называется процессом оптимизации или просто оптимизацией. Выбор оптимального состава многокомпонентных смесей или сплавов, повышение производительности действующих установок, повышение качества продукции, снижение затрат на ее получение – вот примеры задач оптимизации.

Эксперимент, который ставится для решения задач оптимизации, называется экстремальным. Это наввание связано с глубокой аналогией между оптимизацией и поиском экстремума некоторой функции. Давайте рассмотрим следующие две задачи.

1. Прочность бетона в значительной степени определяется маркой цемента, количеством наполнителя и количеством воды. Требуется установить связь между прочностью бетона и названными факторами.

2. Надежность некоторого полупроводникового прибора зависит от ряда технологических факторов. Требуется так подобрать значения этих факторов, чтобы надежность прибора повысилась.

Как вы думаете, какая из этих задач является экстремальной?

Чтобы облегчить вам выбор, укажем на признак, отличающий экстремальные задачи. Задача является экстремальной, если цель ее состоит в поиске экстремума некоторой функции. Чтобы установить, какая из двух задач является экстремальной, надо обратиться к их формулировкам и выяснить, где удовлетворяются требования экстремальности. В задаче 1 требуется установить связь между прочностью бетона и тремя факторами. Здесь не определено, какая прочность является оптимальной, и не требуется ее оптимизировать. В задаче 2 необходимо повысить надежность прибора.

Сама постановка задачи указывает на то, что существующая надежность не удовлетворяет экспериментатора и требуется поиск таких условий, при которых ее значения повысятся. Задачи назывеминтерполяционными, а типа 2 – экстремальными.

Чтобы продвинуться дальше, нам придется определить еще ряд важных понятий, первое из которых – «объект исследования». Для описания объекта исследования удобно пользоваться представлением о кибернетической системе, которая схематически изображена на рисунке. Иногда такую кибернетическую систему называют «черным ящиком». Стрелки справа изображают численные характеристики целей исследования.

Мы обозначаем их буквой игрек и называем параметрами оптимизации В литературе вы можете встретить другие названия: критерий оптимизации, целевая функция, выход «черного ящика» и т.д.

Для проведения эксперимента необходимо иметь возможность воздействовать на поведение «черного ящика». Все способы такого воздействия мы обозначаем буквой икс и называем факторами. Их называют также входами «черного ящика».

При решении задачи будем использовать математические модели объекта исследования. Под математической моделью мыпонимаем уравнение, связывающее параметр оптимизации с факторами. Это уравнение в общем виде можно записать так:

y=(x1, x2, x3,…,xn) где символ ( ), как обычно в математике, заменяет слова: «функция от». Такая функция называется функцией отклика.

Каждый фактор может принимать в опыте одно из нескольких значений. Такие значения будем называть уровнями. Может оказаться, что фактор способен принимать бесконечно много значений (непрерывный ряд). Однако на практике точность, с которой устанавливается некоторое значение, не беспредельна. Поэтому мы вправе считать, что всякий фактор имеет определенное число дискретных уровней. Это соглашение существенно облегчает построение «черного ящика» и эксперимента, а также упрощает оценку их сложности.

Фиксированный набор уровней факторов (т.е. установление каждого фактора на некоторый уровень) определяет одно из возможных состояний «черного ящика».

Одновременно это есть условия проведения одного из возможных опытов. Если перебрать все возможные наборы состояний, то мы получим полное множество различных состояний данного «ящика». Одновременно это будет число возможных различных опытов.

Чтобы узнать число различных состояний, достаточно число уровней факторов (если оно для всех факторов одинаково) возвести в степень числа факторов k: pk, где р– число уровней.

Yа первый взгляд простая система с пятью факторами на пяти уровнях имеет состояний, а для десяти факторов на четырех уровнях их уже свыше миллиона!

В этих условиях мы просто вынуждены отказаться от таких экспериментов, которые включают все возможные опыты: перебор слишком велик. Тогда возникает вопрос: сколько и каких опытов надо включить в эксперимент, чтобы решить поставленную задачу? Здесь–то и приходит на помощь планирование эксперимента.

Однако нужно иметь в виду, что при планировании эксперимента не безразлично, какими свойствами обладает объект исследования. Укажем два основных требования, с которыми приходится считаться. Прежде всего существенно, воспроизводятся ли на объекте результаты эксперимента. Выберем некоторые уровни для всех факторов и в этих условиях проведем эксперимент. Затем повторим его несколько раз через неравные промежутки времени и сравним значения параметра оптимизации. Разброс этих значений характеризует воспроизводимость результатов. Если он не превышает некоторой заранее заданной величины (наших требований к точности эксперимента), то объект удовлетворяет требованию воспроизводимости результатов, а если превышает, то не удовлетворяет этому требованию. Мы будем рассматривать только такие объекты, для которых требование воспроизводимости выполняется.

Планирование эксперимента предполагает активное вмешательство в процесс и возможность выбора в каждом опыте тех уровней факторов, которые представляют интерес. Поэтому такой эксперимент называется активным. Объект, на котором возможен активный эксперимент, называется управляемым. Это и есть второе требование к объекту исследования.

На практике нет абсолютно управляемых объектов. На реальный объект обычно действуют как управляемые, так и неуправляемые факторы. Неуправляемые факторы влияют на воспроизводимость эксперимента и являются причиной ее нарушения. Если требования воспроизводимости не выполняются, приходится обращаться к активно– пассивному эксперименту.

Возможно, плохаявоспроизводимость объясняется действием фактора, систематически изменяющегося (дрейфующего) во времени. Тогда нужно обращаться к специальным методам планирования. Наконец, возможно, что все факторы неуправляемы. В этом случае возникает задача установления связи между параметром оптимизации и факторами по результатам наблюдений за поведением объекта, или, как говорят, по результатам пассивного эксперимента.

Планирование экстремального эксперимента – это метод выбора количества и условий проведения опытов, минимально необходимых для отыскания оптимальных условий, т. е. для решения поставленной задачи.

Понятие «объект исследования» требует точного формального определения. Для такого определения удалось приспособить кибернетическое понятие «черный ящик» – модель объекта. Экспериментатор, вставший на путь применения методов планирования эксперимента, должен уметь формулировать свою задачу в терминах «черного ящика».

Входы «черного ящика» называются факторами. Каждый фактор может принимать некоторое определенное число различных значений, называемых уровнями. Сочетание определенных уровней всех факторов определяет возможное состояние «черного ящика»

и условия одного из возможных опытов.

Совокупность всех различных возможных состояний определяет сложность «черного ящика» и общее число возможных опытов.

Результаты эксперимента используются для получения математической модели объект исследования, которая представляет собой уравнение, связывающее параметр оптимизации и факторы. Такое уравнение называется функцией отклика.

Использование для получения модели всех возможных опытов приводит к абсурдно, большим экспериментам. Задача выбора необходимых для эксперимента опытов, методов математической обработки их результатов и принятия решений – это и есть задача планирования эксперимента. Частный случай этой задачи –планирование экстремального эксперимента, т. е. эксперимента, поставленного с целью поиска оптимальных условий функционирования объекта. Планирование экстремального эксперимента – метод выбора минимального количества опытов, необходимых для отыскания оптимальных условий.

Под экспериментом будем понимать метод научного исследования, когда исследователь активно и целенаправленно воздействует на объект исследования путем создания искусственных условий или использования естественных с целью получения информации о его свойствах.

Важнейшей задачей методов обработки полученной в ходе эксперимента информации является задача построения математической модели изучаемого явления, процесса, объекта. Ее можно использовать и при анализе процессов и при проектировании объектов. Другой задачей обработки полученной в ходе эксперимента информации является задача оптимизации, т.е. нахождения такой комбинации влияющих независимых переменных, при которой выбранный показатель оптимальности принимает экстремальное значение.

Планирование эксперимента – выбор плана эксперимента, удовлетворяющего заданным требованиям, совокупность действий направленных на разработку стратегии экспериментирования (от получения априорной информации до получения работоспособной математической модели или определения оптимальных условий). Это целенаправленное управление экспериментом, реализуемое в условиях неполного знания механизма изучаемого явления.

Под планом эксперимента– понимается совокупность данных, определяющих число, условия и порядок реализации опытов. Под словом опыт в данном случае имеется в виду отдельная, элементарная часть эксперимента. Соответственно, понятие планирование эксперимента, определяемое как процесс разработки плана эксперимента, включает в себя все, что делается по разработке стратегии экспериментирования от начальных до заключительных этапов изучения объекта исследования, т.е. от получения априорной информации до создания работоспособной математической модели объекта исследования или определения оптимальных условий. Планирование способствует значительной интенсификации труда исследователя и сокращению затрат на эксперимент, повышению достоверности полученных результатов исследования.

Основным математическим аппаратом теории планирования эксперимента является теория вероятностей и математическая статистика.

Многомерное факторное пространство– это множество точек, каждая из которых соответствует определенной комбинации факторов. Область возможных комбинаций факторов называется областью возможных (допустимых) планов эксперимента.

Вектор, образуемый выходными параметрами–характеристиками свойств или качеств объекта, называют откликом, а зависимость отклика от рассматриваемых факторов – функцией отклика. Геометрическое представление функции отклика в факторном пространстве называют поверхностью отклика. Функцию отклика называют также целевой функцией, имея в виду, что при планировании эксперимента с целью нахождения оптимальных условий она является критерием оптимальности.

Планирование эксперимента проводится в несколько этапов :

постановка задачи (определение цели эксперимента, выяснение исходной ситуации, оценка допустимых затрат времени и средств, установление типа задачи);

сбор априорной информации (получение литературы, опрос специалистов и т.п.);

выбор способа решения и стратегии его реализации (установление типа модели, выявление возможных влияющих факторов, выявление выходных параметров, выбор целевых функций, создание необходимых нестандартных технических средств, формулировка статистических задач, выбор или разработка алгоритмов программ обработки экспериментальных данных).

Основными концепциями современного подхода к организации эксперимента являются рандомизация, многофакторность и автоматизация.

Сущность рандомизации состоит в следующем. Любое экспериментальное исследование проводится, как правило, в условиях действия систематических ошибок и факторов, которые трудно поддаются учету и контролю. При традиционном подходе к эксперименту исследователи нередко пытаются отделить изучаемое явление от мешающих факторов, как это можно сделать в детерминированных объектах с хорошо изученной структурой. Очевидно, что в недетерминированных объектах с огромным количеством случайных факторов ценность эксперимента, проведенного в особых условиях, не может быть высокой.

Концепция рандомизации предлагает принципиально новый подход к организации выборочных данных эксперимента. План эксперимента составляется таким образом, чтобы рандомизировать, то есть сделать случайными в пространстве и во времени, систематически действующие мешающие факторы. Тогда эти факторы можно рассматривать как случайные величины и, следовательно, учесть статистически их влияние в значении ошибки эксперимента. Иными словами, в противоположность традиционному подходу к эксперименту со стремлением стабилизировать мешающие факторы рандомизация внесла концепцию случая в эксперимент.

Принцип многофакторности отражает новый подход к эксперименту в задачах с многими факторами. При изучении объектов с несколькими факторами согласно этому принципу исследователю предлагается ставить опыты так, чтобы варьировать все факторы сразу в отличие от традиционного подхода, когда исследователь пытается изучать действие каждого фактора при поочередном варьировании. Организация эксперимента с применением многофакторных схем варьирования позволяет повысить точностью оценок параметров подбираемых моделей для недетерминированных объектов, точнее оценить чувствительность выходной зависимой переменной объекта к вариации изучаемых входных независимых переменных.

Развитие технических программных средств вычислительной техники дает возможность говорить о новой концепции в организации научных исследований – автоматизации эксперимента. Технические средства вычислительных комплексов позволяют на качественно новом уровне по точности, быстродействию и наглядности решать задачи сбора, переработки и отображения информации. Программные средства предоставляют исследователю новые возможности организации процесса анализа данных, создания автоматически управляемой последовательности процедур анализа, использования интерактивного режима работы с пакетами прикладных программ.

Среди основных методов планирования, применяемых на разных этапах исследования, используют:

планирование отсеивающего эксперимента, основное значение которого выделение из всей совокупности факторов группы существенных факторов, подлежащих дальнейшему детальному изучению;

планирование эксперимента для дисперсионного анализа, т.е. составление планов для объектов с качественными факторами;

планирование регрессионного эксперимента, позволяющего получать регрессионные модели (полиномиальные и иные);

планирование экстремального эксперимента, в котором главная задача – экспериментальная оптимизация объекта исследования;

планирование при изучении динамических процессов и т.д.

При пассивном эксперименте существуют только факторы в виде входных контролируемых, но неуправляемых переменных, и экспериментатор находится в положении пассивного наблюдателя. Задача планирования в этом случае сводится к оптимальной организации сбора информации и решению таких вопросов, как выбор количества и частоты измерений, выбор метода обработки результатов измерений.

Наиболее часто целью пассивного эксперимента является построение математической модели объекта, которая может рассматриваться либо как хорошо, либо как плохо организованный объект. В хорошо организованном объекте имеют место определенные процессы, в которых взаимосвязи входных и выходных параметров устанавливаются в виде детерминированных функций. Поэтому такие объекты называют детерминированными. Плохо организованные или диффузные объекты представляют собой статистические модели. Методы исследования с использованием таких моделей не требуют детального изучения механизма процессов и явлений, протекающих в объекте.

Рис 9.1. График регрессионной зависимости y от х Множество всех точек проведения экспериментов xi=(xi1, xi2, …, xin), i=1, 2, …, N представляется с помощью матрицы и называется планом эксперимента Однофакторный пассивный эксперимент проводится путем выполнения n пар измерений в дискретные моменты времени единственного входного параметра х и соответствующих значений выходного параметра y. Аналитическая зависимость между этими параметрами вследствие случайного характера возмущающих воздействий рассматривается в виде зависимости математического ожидания y от значения х, носящей название регрессионной. Соответствующая линия А В показана на графике (рис.9.1).

Целью однофакторного пассивного эксперимента является построение регрессионной модели. Следует отметить, что регрессионная модель является приближенной оценкой истинной регрессионной зависимости. Для построения модели следует провести обоснованный выбор аппроксимирующей функции. Критериями выбора являются простота, удобство пользования, обеспечение требуемой точности аппроксимации, адекватность. Адекватная регрессионная модель позволяет предсказывать с требуемой точностью значения выходной величины в некоторой области значений входной.

Нередко для выбора аппроксимирующей функции пользуются кривой регрессионной зависимости, проведенной "на глаз".

Чаще всего регрессионная модель представляется с помощью аппроксимирующей функцией в виде полинома Приняв такую модель, следует определиться в порядке полинома, после чего вычислить параметры а1, а2,…,аm.

В общем случае результаты измерения li значения выходной величины и ее значения yi определяемые регрессионной зависимостью от входного фактора xi, не совпадают, т.е. отлична от нуля разность i=li–yi, что связано с наличием погрешности измерения и возмущающих воздействий. Обычно считают, что i не зависит от значения y (т.е. аддитивна) и подчиняется нормальному закону распределения с нулевым математическим ожиданием.

Если выполнено n измерений, то их результаты можно записать в виде:

Система уравнений (9.3) линейна относительно aj. Для нахождения оценок aj из условия минимума j необходимо добиться равенства нулю всех частных производных функций по aj. Получим систему нормальных уравнений:

Сгруппировав все коэффициенты при неизвестных aj и записав уравнения системы (9.4) в стандартном виде можно вычислить искомые параметры aj методом определителей.

Многофакторный пассивный эксперимент дает n значений выходного параметра y объекта, соответствующих измерениям n совокупностей значений выходных параметров:

.……...............

где xij – значение j входного параметра в i–м измерении (j=1,2,...,n).

В качестве регрессионной модели примем линейный многочлен вида Заменим переменные их центрированными значениями:

Тогда модель принимает вид На основе (9.6) составляется система нормальных уравнений вида (9.4) (с заменой m на k) и вычисляются оценки параметров. Затем вычисляется оценка и осуществляется переход к исходной модели (9.5).

Лекция 2. Критерии оптимальности и типы планов. Параметр оптимизации.

В настоящее время используется свыше 20 различных критериев оптимальности планов, которые подразделяются на две основные группы. К первой группе относят критерии, связанные с ошибками оценок коэффициентов, а ко второй – с ошибкой оценки поверхности отклика [2, 3, 6]. Далее будут охарактеризованы только те критерии, которые наиболее часто применяются при решении задач оптимизации, описания поверхности отклика и оценки влияния факторов.

Критерии первой группы представляют интерес для задач оптимизации, выделения доминирующих (наиболее значимых) параметров на начальных этапах решения оптимизационных задач или для выявления несущественных параметров в задачах восстановления закономерности функционирования объекта. Геометрическое истолкование свойств ошибок коэффициентов связано со свойствами эллипсоида их рассеяния, определяемого математическим ожиданием и дисперсией значений ошибок.

Пространственное расположение, форма, и размер эллипсоида полностью зависят от плана эксперимента.

Критерию D-оптимальности соответствует минимальный объем эллипсоида рассеяния ошибок (минимум произведения всех дисперсий коэффициентов полинома). В соответствующем плане эффекты факторов максимально независимы друг от друга. Этот план минимизируют ожидаемую ошибку предсказания функции отклика. Критерию Aоптимальности соответствует план с минимальной суммарной дисперсией всех коэффициентов. Критерию E-оптимальности – план, в котором максимальная дисперсия коэффициентов будет минимальна.

Выбор критерия зависит от задачи исследования, так при изучении влияния отдельных факторов на поведение объекта применяют критерий Е -оптимальности, а при поиске оптимума функции отклика – D-оптимальности. Если построение Dоптимального плана вызывает затруднения, то можно перейти к А-оптимальному плану, построение которого осуществляется проще.

Критерии второй группы используются при решении задач описания поверхности отклика, определения ограничений на значения параметров. Основным здесь является критерий G-оптимальности, который позволяет построить план с минимальным значением наибольшей ошибки в описании функции отклика. Применение Gоптимального плана дает уверенность в том, что в области планирования нет точек с чрезмерно большой ошибкой описания функции.

Среди всех классов планов основное внимание в практической работе уделяется ортогональным и ротатабельным планам.

Ортогональным называется план, для которого выполняется условие парной ортогональности столбцов матрицы планирования, в частности, для независимых переменных, где N – количество точек плана эксперимента, k – количество независимых факторов. При ортогональном планировании коэффициенты полинома определяются независимо друг от друга – вычеркивание или добавление слагаемых в функции отклика не изменяет значения остальных коэффициентов полинома. Для ортогональных планов эллипсоид рассеяния ориентирован в пространстве так, что направления его осей совпадают с направлениями координат пространства параметров.

Использование ротатабельных планов обеспечивает для любого направления от центра эксперимента равнозначность точности оценки функции отклика (постоянство дисперсии предсказания) на равных расстояниях от центра эксперимента. Это особенно важно при решении задач поиска оптимальных значений параметров на основе градиентного метода, так как исследователь до начала экспериментов не знает направление градиента и поэтому стремится принять план, точность которого одинакова во всех направлениях. В ряде случаев при исследовании поверхности отклика требуется униморфность модели, а именно, соблюдение постоянства значений дисперсии ошибки в некоторой области вокруг центра эксперимента. Выполнение такого требования целесообразно в тех случаях, когда исследователь не знает точно расположение области поверхности отклика с оптимальными значениями параметров. Указанная область будет определена на основе упрощенной модели, полученной по результатам экспериментов.

По соотношению между количеством оцениваемых неизвестных параметров модели и количеством точек плана эксперимента все планы подразделяются на три класса: ненасыщенные – количество параметров меньше числа точек плана; насыщенные – обе величины одинаковы; сверхнасыщенные – количество параметров больше числа точек плана. Метод наименьших квадратов применяют только при ненасыщенном и насыщенном планировании, и он не применим для сверхнасыщенного планирования.

Для некоторых планов важную роль играет свойство композиционности. Так, композиционные планы для построения полиномов второго порядка получают добавлением некоторых точек к планам формирования линейных функций. Это дает возможность в задачах исследования сначала попытаться построить линейную модель, а затем при необходимости, добавив наблюдения, перейти к моделям второго порядка, использую ранее полученные результаты и сохраняя при этом некоторое заданное свойство плана, например его ортогональность.

Между критериями оптимальности и методами построения оптимальных планов экспериментов существует жесткая связь. Построение планов производится или с использованием каталогов планов или с использованием непосредственно методов планирования экспериментов, что является непростой задачей и требует достаточно высокой квалификации исследователя в области ТПЭ.

Кроме рассмотренных критериев в планировании экспериментов вполне естественно применяется критерий минимума числа экспериментов, т.е. среди всех планов желательно выбирать такой, который требует минимального числа опытов при соблюдении требований к качеству оценки функции или ее параметров.

Как было отмечено выше, одной из областей применения ТПЭ является решение задач оптимизации, причем непосредственно для поиска оптимальных решений используются градиентные методы. Вычисление оценки градиента осуществляется на основе обработки экспериментальных данных. Хотя градиентный метод оптимизации не является составной частью ТПЭ, в целях удобства освоения материала далее приведено его краткое изложение.

ПАРАМЕТР ОПТИМИЗАЦИИ

При планировании экстремального эксперимента очень важно определить параметр, который нужно оптимизировать. Сделать это совсем не так просто, как кажется на первый взгляд. Цель исследования должна быть сформулирована очень четко и допускать количественную оценку. Будем называть характеристику цели, заданную количественно, параметром оптимизации. Параметр оптимизации является реакцией (откликом) на воздействие факторов, которые определяют поведение выбранной вами системы. Реакция объекта многогранна, многоаспектна. Выбор того аспекта, который представляет наибольший интерес, как раз и задается целью исследования.

При традиционном нематематическом подходе исследователь стремится как–то учесть разные аспекты, взвесить их и принять согласованное решение о том, какой опыт лучше. Однако разные экспериментаторы проведут сравнение опытов неодинаково.

Прежде чем сформулировать требования к параметрам оптимизации и рекомендации по их выбору, познакомимся с различными видами параметров.

Виды параметров оптимизации В зависимости от объекта и цели исследования параметры оптимизации могут быть весьма разнообразными. Чтобы ориентироваться в этом многообразии, введем некоторую классификацию. Реальные ситуации, как правило, сложны. Они часто требуют одновременного учета нескольких, иногда очень многих, параметров. В принципе каждый объект может характеризоваться сразу всей совокупностью параметров. Движение к оптимуму возможно, если выбран один–единственный параметр оптимизации. Тогда прочие характеристики процесса уже не выступают в качестве параметров оптимизации, а служат ограничениями. Другой путь – построение обобщенного параметра оптимизации как некоторой функции от множества исходных.

Экономические параметры оптимизации, такие, как прибыль, себестоимость и рентабельность, обычно используются при исследовании действующих промышленных объектов, тогда как затраты на эксперимент имеет смысл оценивать в любых исследованиях, в том числе и лабораторных. Если цена опытов одинакова, затраты на эксперимент пропорциональны числу опытов, которые необходимо поставить для решения данной задачи. Это в значительной мере определяет выбор плана эксперимента.

Среди технико–экономических параметров наибольшее распространение имеет производительность. Такие параметры, как долговечность, надежность и стабильность, связаны с длительными наблюдениями. Имеется некоторый опыт их использования при изучении дорогостоящих ответственных объектов, например радиоэлектронной аппаратуры.

Почти во всех исследованиях приходится учитывать количество и качество получаемого продукта. Как меру количества продукта используют выход, например, процент выхода химической реакции, выход годных изделий.

Показатели качества чрезвычайно разнообразны. Характеристики количества и качества продукта образуют группу технико–технологических параметров.

Под рубрикой «прочие» сгруппированы различные параметры, которые реже встречаются, но не являются менее важными. Сюда попали статистические параметры, используемые для улучшения характеристик случайных величин или случайных функций. В качестве примеров назовем задачи на минимизацию дисперсии случайной величины, на уменьшение числа выбросов случайного процесса за фиксированный уровень и т.д. Последняя задача возникает, в частности, при выборе оптимальных настроек автоматических регуляторов или при улучшении свойств нитей (проволока, пряжа, искусственное волокно и др.).

С ростом сложности объекта возрастает роль психологических аспектов взаимодействия человека или животного с объектом. Так, при выборе оптимальной организации рабочего места оператора параметром оптимизации может служить число ошибочных действий в различных возможных ситуациях. Сюда относятся задачи выработки условных рефлексов типа задачи «крысы в лабиринте».

При решении задачи технической эстетики или сравнении произведений искусства возникает потребность в эстетических параметрах. Они основаны на ранговом подходе.

Давайте рассмотрим следующий пример.

Пример 1. Во время второй мировой войны несколько сот английских торговых судов на Средиземном море были вооружены зенитными орудиями для защиты от вражеских бомбардировщиков. Поскольку это мероприятие было достаточно дорогим (требовалось иметь на каждом судне боевую команду), через несколько месяцев решили оценить его эффективность. Какой из параметров оптимизации более подходит для этой цели?

Число сбитых самолетов.

Потери в судах, оснащенных орудиями, по сравнению с судами без орудий.

Если Вы считаете, что эффективность установления орудий на торговые суда можно оценить числом сбитых самолетов, то Вы вряд ли смогли бы занять пост командующего английским флотом на Средиземном море. Выбранный Вами параметр оптимизации оценивает эффективность уничтожения самолетов. В то же время ясно, что значения параметра оптимизации в этом случав будут низкими, так как существуют куда более эффективные средства для этой цели (авиация, боевой флот), чем зенитные орудия на торговых судах.

Если же Вы полагаете, что эффективность установки орудий на торговые суда можно оценить сопоставлением потерь в судах, оснащенных орудиями, с потерями в судах без орудий, то это разумный выбор параметра оптимизации, потому что основной задачей при установке орудий была защита судов. Самолеты вынуждены были теперь использовать противозенитные маневры и бомбометание с большой высоты, что уменьшало потери. Из числа атакованных самолетами торговых судов с зенитными орудиями было потоплено 10% судов, а потери в судах без орудий составили 25%.

Затраты на установку орудий и содержание боевых расчетов окупились очень быстро.

Требования к параметру оптимизации Параметр оптимизации – это признак, по которому мы хотим оптимизировать процесс. Он должен быть количественным, задаваться числом. Мы должны уметь его измерять при любой возможной комбинации выбранных уровней факторов. Множество значений, которые может принимать параметр оптимизации, будем называть областью его определения. Области определения могут быть непрерывными и дискретными, ограниченными и неограниченными. Например, выход реакции – это параметр оптимизации с непрерывной ограниченной областью определения. Он может изменяться в интервале от 0 до 100%. Число бракованных изделий, число зерен на шлифе сплава, число кровяных телец в пробе крови – вот примеры параметров с дискретной областью определения, ограниченной снизу.

Уметь измерять параметр оптимизации – это значит располагать подходящим прибором. В ряде случаев такого прибора может не существовать или он слишком дорог.

Если нет способа количественного измерения результата, то приходится воспользоваться приемом, называемым ранжированием (ранговым подходом). При этом параметрам оптимизации присваиваются оценки – ранги по заранее выбранной шкале: двухбалльной, пятибалльной и т. д. Ранговый параметр имеет дискретную ограниченную область определения. В простейшем случае область содержит два значения (да, нет; хорошо, плохо). Это может соответствовать, например, годной продукции и браку.

Ранг – это количественная оценка параметра оптимизации, но она носит условный (субъективный) характер. Мы ставим в соответствие качественному признаку некоторое число – ранг.

Для каждого физически измеряемого параметра оптимизации можно построить ранговый аналог. Потребность в построении такого аналога возникает, если имеющиеся в распоряжении исследователя численные характеристики неточны или неизвестен способ построения удовлетворительных численных оценок. При прочих равных условиях всегда нужно отдавать предпочтение физическому измерению, так как ранговый подход менее чувствителен и с его помощью трудно изучать тонкие эффекты.

Пример 2. Ваша жена решила испечь яблочный пирог по новому рецепту. Вам, конечно, трудно остаться в стороне, и вы предлагаете ей свои услуги по оптимизации этого процесса. Цель процесса – получение вкусного пирога, но такая формулировка цели еще не дает возможности приступить к оптимизации: необходимо выбрать количественный критерий, характеризующий степень достижения цели. Можно принять следующее решение: очень вкусный пирог получает отметку 5, просто вкусный пирог – отметку 4 и т.д.

Как вы полагаете, можно ли после такого решения переходить к оптимизации процесса?

Давайте разберемся. Нам важно количественно оценить результат оптимизации.

Решает ли отметка эту задачу? Конечно, потому что, как мы договорились, отметка соответствует очень вкусному пирогу и т.д. Другое дело, что этот подход, называемый ранговым, часто оказывается грубым, нечувствительным. Но возможности такой количественной оценки результатов не должна вызывать сомнений.

Другие примеры рангового подхода: определение чемпиона мира по фигурному катанию или гимнастике, дегустация вин, сравнение произведений искусства и т. д. Или, если хотите, из области химии: сравнение продуктов по цвету, прозрачности, форме кристаллов.

Следующее требование: параметр оптимизации должен выражаться одним числом.

Иногда это получается естественно, как регистрация показания прибора. Например, скорость движения машины определяется числом на спидометре. Чаще приходится производить некоторые вычисления. Так бывает при расчете выхода реакции. В химии часто требуется получать продукт с заданным отношением компонентов, например, А:В=3:2. Один из возможных вариантов решения подобных задач состоит в том, чтобы выразить отношение одним числом (1,5) и в качестве параметра оптимизации пользоваться значениями отклонений (или квадратов отклонений) от этого числа.

Еще одно требование, связанное с количественной природой параметра оптимизации, – однозначность в статистическом смысле. Заданному набору значений факторов должно соответствовать одно с точностью до ошибки эксперимента значение параметра оптимизации. (Однако обратное неверно: одному и тому же значению параметра могут соответствовать разные наборы значений факторов.) Для успешного достижения цели исследования необходимо, чтобы параметр оптимизации действительно оценивал эффективность функционирования системы в заранее выбранном смысле. Это требование является главным, определяющим корректность постановки задачи.

Представление об эффективности не остается постоянным в ходе исследования.

Оно меняется по мере накопления информации и в зависимости от достигнутых результатов. Это приводит к последовательному подходу при выборе параметра оптимизации. Так, например, на первых стадиях исследования технологических процессов в качестве параметра оптимизации часто используется выход продукта.

Однако в дальнейшем, когда– возможность повышения выхода исчерпана, нас начинают интересовать такие параметры, как себестоимость, чистота продукта и т.д.

Говоря об оценке эффективности функционирования системы, важно помнить, что речь идет о системе в целом. Часто система состоит из ряда подсистем, каждая из которых может оцениваться своим локальным параметром оптимизации. При этом оптимальность каждой из подсистем по своему параметру оптимизации «не исключает возможности гибели системы в целом».

Мало иметь эффективный параметр оптимизации. Надо еще, чтобы он был эффективный в статистическом смысле. Понятие статистической эффективности достаточно сложное, и мы не будем здесь заниматься точными формулировками.

Фактически это требование сводится к выбору параметра оптимизации, который определяется с наибольшей возможной точностью. (Если и эта точность недостаточна, тогда приходится обращаться к увеличению числа повторных опытов.) Пусть, например, нас интересует исследование прочностных характеристик некоторого сплава. В качестве меры прочности можно использовать как прочность на разрыв, так и макротвердость. Поскольку эти характеристики функционально связаны, то с точки зрения эффективности они эквивалентны. Однако точность измерения первой характеристики существенно выше, чем второй. Требование статистической эффективности заставляет отдать предпочтение прочности на разрыв.

Следующее требование к параметру оптимизации – требование универсальности или полноты. Под универсальностью параметра оптимизации понимается его способность всесторонне характеризовать объект. В частности, технологические параметры оптимизации недостаточно универсальны: они не учитывают экономику.

Универсальностью обладают, например, обобщенные параметры оптимизации, которые строятся как функции от нескольких частных параметров.

Желательно, чтобы параметр оптимизации имел физический смысл, был простым и легко вычисляемым.

Требование физического смысла связано с последующей интерпретацией результатов эксперимента. Не представляет труда объяснить, что значит максимум извлечения, максимум содержания ценного компонента. Эти и подобные им технологические параметры оптимизации имеют ясный физический смысл, но иногда для них может не выполняться, например, требование статистической эффективности.

Тогда рекомендуется переходить к преобразованию параметра оптимизации.

Преобразование, например типа arcsiny, может сделать параметр оптимизации статистически эффективным (например, дисперсии становятся однородными), но остается неясным: что же значит достигнуть экстремума этой величины?

Второе требование часто также оказывается весьма существенным. Для процессов разделения термодинамические параметры оптимизации более универсальны. Однако на практике ими пользуются мало: их расчет довольно труден.

Пожалуй, из этих двух требований первое является более существенным, потому что часто удается найти идеальную характеристику системы и сравнить ее с реальной характеристикой. Иногда при этом целесообразно нормировать параметр с тем, чтобы он принимал значения от нуля до единицы.

Кроме высказанных требований и пожеланий при выборе параметра оптимизации нужно еще иметь в виду, что параметр оптимизации в некоторой степени оказывает влияние на вид математической модели исследуемого объекта. Экономические параметры, в силу их аддитивной природы, легче представляются простыми функциями, чем физико–химические показатели. Не случайно методы линейного программирования, основанные на простых моделях, получили широкое распространение именно в экономике. Температура плавления сплава является, как известно, сложной, многоэкстремальной характеристикой состава, тогда как стоимость сплава зависит от состава линейно.

О задачах с несколькими выходными параметрами Задачи с одним выходным параметром имеют очевидные преимущества. Но на практике чаще всего приходится учитывать несколько выходных параметров. Иногда их число довольно велико. Так, например, при производстве резиновых и пластмассовых изделий приходится учитывать физико–механические, технологические, экономические, художественно–эстетические и другие параметры (прочность, эластичность, относительное удлинение, способность смеси прилипать к форме и т. д.).

Математические модели можно построить для каждого из параметров, но одновременно оптимизировать несколько функций невозможно.

Обычно оптимизируется одна функция, наиболее важная с точки зрения цели исследования, при ограничениях, налагаемых другими функциями. Поэтому из многих выходных параметров выбирается один в качестве параметра оптимизации, а остальные служат ограничениями. Всегда полезно исследовать возможность уменьшения числа выходных параметров. Для этого можно воспользоваться корреляционным анализом.

При этом между всевозможными парами параметров необходимо вычислить коэффициент парной корреляции, который является общепринятой в математической статистике характеристикой связи между двумя случайными величинами. Если обозначить один параметр через y1 а другой – через у2, и число опытов, в которых они будут измеряться, – через N, так, что u=1, 2,..., N, где u – текущий номер опыта, то коэффициент парной корреляции г вычисляется по формуле Значения коэффициента парной корреляции могут лежать в пределах от –1 до +1.

Если с ростом значения одного параметра возрастает значение другого, у коэффициента будет знак плюс, а если уменьшается, то минус. Чем ближе найденное значение корреляции к единице, тем сильнее значение одного параметра зависит от того, какое значение принимает другой, т.е. между такими параметрами существует линейная связь, и при изучении процесса можно рассматривать только один из них. Необходимо помнить, что коэффициент парной корреляции как мера тесноты связи имеет четкий математический смысл только при линейной зависимости между параметрами и в случае нормального их распределения.

Для проверки значимости коэффициента парной корреляции нужно сравнить его значение с табличным (критическим) значением. Для пользования таблицей нужно знать число степеней свободы f=N – 2 и выбрать определенный уровень значимости, например, равный 0,05. Такое значение уровня значимости называют еще 5%–ным уровнем риска, что соответствует вероятности верного ответа при проверке нашей гипотезы H=1 – а=0,95, или 95%. Это значит, что в среднем только в 5% случаев возможна ошибка при проверке гипотезы.

В практических исследованиях 5%–ный уровень риска применяется наиболее часто.

Но экспериментатор всегда свободен в выборе уровня значимости, и возможны ситуации, в которых, например, требуется 1 %–ный уровень риска. При этом возрастает надежность ответа. Проверка гипотезы сводится к сравнению абсолютной величины коэффициента парной корреляции с критическим значением. Если экспериментально найденное значение меньше критического, то нет оснований считать, что имеется тесная линейная связь между параметрами, а если больше или равно, то гипотеза о корреляционной линейной связи не отвергается.

При высокой значимости коэффициента корреляции любой из двух анализируемых параметров можно исключить из рассмотрения как не содержащий дополнительной информации об объекте исследования. Исключить можно тот параметр, который технически труднее измерять, или тот, физический смысл которого менее ясен. При планировании эксперимента целесообразно измерять все параметры, затем оценить корреляцию между ними и строить модели для их минимально возможного числа или же воспользоваться обобщенным параметром. Но бывают случаи, когда приходится рассматривать и коррелированные параметры.

Лекция 3. ГРАДИЕНТНЫЕ МЕТОДЫ ОПТИМИЗАЦИИ Любую совокупность вещественных чисел (v1, v2, …, vk), взятых в определенном порядке, можно рассматривать как точку или вектор с теми же координатами в пространстве k измерений (k-мерном пространстве). Запись вида v = (v1, v2, …, vk) обозначает точку или вектор v с указанными в скобках координатами [4]. Если для kмерных векторов v и w справедливы основные алгебраические операции:

сложение и вычитание умножение на действительное число скалярное произведение то совокупность всех таких векторов называют k-мерным евклидовым пространством и обозначают Ek.

Длиной вектора v называют число, определяемое по формуле Длину вектора можно вычислить только тогда, когда компоненты вектора представлены в одной шкале измерений или они являются безразмерными величинами, полученными, например, в результате преобразования (1.1) – кодированные переменные безразмерны.

Если произведение v w = 0 при |v| 0 и |w| 0, то векторы v и w являются ортогональными.

Единичным называют вектор, определяемый по формуле Пусть в Ek заданы некоторая точка v = (v1, v2, …, vk), единичный вектор t и непрерывно дифференцируемая по всем аргументам функция f(V) = f(v1, v2, …, vk).

Производной в точке V от функции f(V) по направлению луча, определяемому вектором t, называется предел Градиентом функции f(V) называют вектор f(V) с координатами, равными частным производным по соответствующим аргументам Градиент указывает направление наибольшего возрастания функции.

Противоположное направление –f(V) называется антиградиентом, оно показывает направление наискорейшего убывания функции. В точке экстремума V* градиент равен нулю f(V*)= 0. Если аналитически производные определить невозможно, их вычисляют приближенно где f(V) – приращение функции f(V) при изменении аргумента на величину vi.

Двигаясь по градиенту (антиградиенту) можно достичь максимума (минимума) функции.

В этом и состоит сущность градиентного метода оптимизации.

Постановка задачи оптимизации Поиск оптимальных значений параметров является одной из важных задач, решаемых при создании новых технических систем, управлении производством или технологическими процессами. В соответствии с теорией эффективности необходимо [1]:

сформировать критерий эффективности (функцию отклика в терминах ТПЭ). В большинстве случаев эффективность определяется совокупностью показателей, характеризующих частные свойства исследуемой системы и выполняемой ею операции.

Критерий эффективности строится на множестве значений частных показателей с использованием теории полезности или методов векторной оптимизации. В некоторых случаях критерий эффективности удается построить на множестве значений одного показателя, переведя все остальные показатели в разряд ограничений;

выделить управляемые и неуправляемые параметры (факторы) системы и среды, оказывающие существенное влияние на критерий эффективности;

определить ограничения на значения параметров.

Задача оптимизации заключается в нахождение экстремума функции отклика в области допустимых значений параметров. Чтобы найти экстремум, необходимо иметь описание поверхности отклика в интервалах варьирования параметров, что далеко не всегда удается получить исходя из теоретических соображений, так как функция отклика в аналитическом виде может быть априори неизвестна.

Реализация задачи оптимизации, основанная на применении ТПЭ, как и любой задачи экспериментального исследования, начинается с определения объекта анализа, цели исследования, изучении сущности исследуемого процесса, анализе имеющихся ресурсов, возможности проведения экспериментов с изучаемым объектом в необходимом диапазоне изменения факторов.

Объектом анализа выступает заданный критерий эффективности исследуемой системы, рассматриваемый как функция от существенных параметров системы и внешней среды. Система может представлять собой реальный физический объект или его модель – физическую или математическую (имитационную, сложную аналитическую).

Изучение процесса функционирования объекта позволяет выявить факторы, оказывающие существенное влияние на функцию отклика. Выбор существенных переменных потенциально определяет степень достижения адекватности получаемой модели: отсутствие в исходном перечне существенных параметров, да еще и произвольно меняющихся в ходе эксперимента, не позволяет правильно решить задачу оптимизации; включение несущественных параметров усложняет модель, вызывает значительное увеличение объема экспериментов, хотя по результатам исследования несущественность соответствующих параметров будет выявлена.

Для каждой переменной следует определить диапазон и характер изменения (непрерывность или дискретность). Ограничения на диапазон изменений могут носить принципиальный или технический характер. Принципиальные ограничения факторов не могут быть нарушены при любых обстоятельствах. Эти ограничения задаются исходя из физических представлений (например, емкость устройств памяти всегда имеет положительное значение). Второй тип ограничений связан с технико-экономическими соображениями, например, с наличием соответствующего аппаратно-программного комплекса, принятой технологией обработки информации.

Выделение области изменения факторов является не формальной задачей, а основывается на опыте исследователя. В рамках области допустимых значений факторов необходимо выделить начальную область планирования эксперимента. Этот выбор включает определение основного (нулевого) уровня как исходной точки построения плана и интервалов варьирования. Интервал варьирования задает относительно основного уровня значения фактора, при которых будут производиться эксперименты.

Обычно интервалы являются симметричными относительно центрального значения.

Интервал варьирования должен отвечать двум ограничениям: его применение не должно приводить к выходу фактора за пределы области допустимых значений; он должен быть больше погрешности задания значений фактора (в противном случае уровни фактора станут не различимыми). В пределах этих ограничений выбор конкретного значения является неформальной процедурой, учитывающей ориентировочную информацию о кривизне поверхности функции отклика.

Фактор должен быть управляемым, т.е. экспериментатор может поддерживать его постоянное значение в течение всего опыта. Для фактора необходимо указать его конкретные значения и средства контроля. Сам фактор должен быть первичным, ибо сложно управлять фактором, который в свою очередь является функцией других факторов. Для каждого фактора следует указать точность его задания и поддержания в ходе эксперимента.

Одновременное изменение факторов предполагает их совместимость, что означает осуществимость и безопасность всех их сочетаний. Необходимо также обеспечить независимость изменения каждого фактора, что означает возможность установления любого значения фактора вне связи со значениями других факторов.

Цель исследования, требуемая точность получаемых результатов, имеющиеся ресурсы ограничивают множество допустимых моделей функции отклика (с усложнением модели и повышением точности оценки показателей резко возрастает объем необходимых опытов) и соответственно предопределяют план проведения экспериментов.

После того как выбран объект исследованияи функция отклика, нужно включить в рассмотрение все существенные факторы, которые могут влиять на процесс. Если какой– либо существенный фактор окажется неучтенным, то это может привести к неприятным последствиям. Так, если неучтенный фактор произвольно флуктуировал – принимал случайные значения, которые экспериментатор не контролировал, – это значительно увеличит ошибку опыта. При поддержании фактора на некотором фиксированном уровне может быть получено ложное представление об оптимуме, так как нет гарантии, что фиксированный уровень является оптимальным.

«Ну, а как же преодолеть большое число опытов? Чем больше факторов, тем больше опытов». Действительно, число опытов растет по показательной функции.

Размерность факторного пространства увеличивается, и математики в таких случаях говорят о «проклятии размерности».

Если число факторов больше пятнадцати, нужно обратиться к методам отсеивания несущественных факторов. Здесь можно воспользоваться формализацией априорной информации, методом случайного баланса, планами Плаккета–Бермана и др. Иногда эти планы применяются и при меньшем числе факторов.

Определение фактора Фактором называется измеряемая переменная величина, принимающая в некоторый момент времени определенное значение. Факторы соответствуют способам воздействия на объект исследования.

Каждый фактор имеет область определения. Мы будем считать фактор заданным, если вместе с его названием указана область его определения. Под областью определения понимается совокупность всех значений, которые в принципе может принимать данный фактор. Ясно, что совокупность значений фактора, которая используется в эксперименте, является подмножеством из множества значений, образующих область определения.

Область определения может быть непрерывной и дискретной. Однако в тех задачах планирования эксперимента, которые мы собираемся рассматривать, всегда используются дискретные области определения. Так, для факторов с непрерывной областью определения, таких, как температура, время, количество вещества и т.п., всегда выбираются дискретные множества уровней. В практических задачах области определения факторов, как правило, ограничены. Ограничения могут носить принципиальный либо технический характер.

Произведем классификацию факторов в зависимости от того, является ли фактор переменной величиной, которую можно оценивать количественно: измерять, взвешивать, титровать и т.п., или же он – некоторая переменная, характеризующаяся качественными свойствами.

Вы уже знаете, что факторы разделяются на количественные и качественные.

Качественные факторы – это разные вещества, разные технологические способы, аппараты, исполнители и т.д.

Хотя качественным факторам не соответствует числовая шкала в том смысле, как это понимается для количественных факторов, однако можно построить условную порядковую шкалу, которая ставит в соответствие уровням качественного фактора числа натурального ряда, т. е. производит кодирование. Порядок уровней может быть произволен, но после кодирования он фиксируется.

В ряде случаев граница между понятием качественного и количественного фактора весьма условна.

Требования, предъявляемые к факторам при планировании эксперимента При планировании эксперимента факторы должны быть управляемыми. Это значит, что экспериментатор, выбрав нужное значение фактора, может его поддерживать постоянным в течение всего опыта, т.е. может управлять фактором. В этом состоит особенность «активного» эксперимента. Планировать эксперимент можно только в том случае, если уровни факторов подчиняются воле экспериментатора.

Представьте себе, что вы изучаете процесс синтеза аммиака. Колонна синтеза установлена на открытой площадке. Является ли температура воздуха фактором, который можно включить в планирование эксперимента?

Температура воздуха – фактор неуправляемый. Мы еще не научились делать погоду по заказу. А в планировании могут участвовать только те факторы, которыми можно управлять, – устанавливать и поддерживать на выбранном уровне в течение опыта или менять по заданной программе. Температурой окружающей среды в данном случае управлять невозможно. Ее можно только контролировать.

Чтобы точно определить фактор, нужно указать последовательность действий (операций), с помощью которых устанавливаются его конкретные значения (уровни).

Такое определение фактора будем называть операциональным. Так, если фактором является давление в некотором аппарате, то совершенно необходимо указать, в какой точке и с помощью какого прибора оно измеряется и как оно устанавливается. Введение операционального определения обеспечивает однозначное понимание фактора.

С операциональным определением связаны выбор размерности фактора и точность его фиксирования. Мы привыкли считать, что выбор размерности фактора не представляет особой трудности. Экспериментатор хорошо ориентируется в том, какую размерность нужно использовать. Это действительно так в тех случаях, когда существует устоявшаяся традиция, построены измерительные шкалы, приборы, созданы эталоны и т.д. Так обстоит дело при измерении температуры, времени, давления и т.д. Но бывает, что выбор размерности превращается в весьма трудную проблему выбора измерительных шкал.

Замена одной измерительной шкалы другой называется преобразованием шкал.

Оно может быть использовано для упрощения модели объекта.

Точность замера факторов должна быть возможно более высокой. Степень точности определяется диапазоном изменения факторов. При изучении процесса, который длится десятки часов, нет необходимости учитывать доли минуты, а в быстрых процессах необходимо учитывать, быть может, доли секунды.

Факторы должны быть непосредственными воздействиями на объект. Факторы должны быть однозначны. Трудно управлять фактором, который, является функцией других факторов. Но в планировании могут участвовать сложные факторы, такие, как соотношения между компонентами, их логарифмы и т.п.

Необходимость введения сложных факторов возникает при желании представить динамические особенности объекта в статической форме. Пусть, например, требуется найти оптимальный режим подъема температуры в реакторе. Если относительно температуры известно, что она должна нарастать линейно, то в качестве фактора вместо функции (в данном случае линейной) можно использовать тангенс угла наклона, т.е.

градиент. Положение усложняется, когда исходная температура не зафиксирована. Тогда ее приходится вводить в качестве еще одного фактора.

Требования к совокупности факторов При планировании эксперимента обычно одновременно изменяется несколько факторов. Поэтому очень важно сформулировать требования, которые предъявляются к совокупности факторов.

Прежде всего выдвигается требование совместимости. Совместимость факторов означает, что все их комбинации осуществимы и безопасны. Это очень важное требование. Представьте себе, что вы поступили легкомысленно, не обратили внимания на требование совместимости факторов и запланировали такие условия опыта, которые могут привести к взрыву установки. Согласитесь, что такой результат очень далек от целей оптимизации.

Несовместимость факторов может наблюдаться на границах областей их определения. Избавиться от нее можно сокращением областей. Положение усложняется, если несовместимость проявляется внутри областей определения. Одно из возможных решений – разбиение на подобласти и решение двух отдельных задач.



Pages:   || 2 | 3 | 4 |
 
Похожие работы:

«ФЕДЕРАЛЬНОЕ АГЕНТСТВО ПО ОБРАЗОВАНИЮ ГОСУДАРСТВЕННОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ ГОСУДАРСТВЕННЫЙ ТЕХНОЛОГИЧЕСКИЙ УНИВЕРСИТЕТ МОСКОВСКИЙ ИНСТИТУТ СТАЛИ И СПЛАВОВ НОВОТРОИЦКИЙ ФИЛИАЛ Кафедра металлургических технологий Е.В, Братковский, А.В. Заводяный ТЕХНОЛОГИЧЕСКИЕ ИЗМЕРЕНИЯ И ПРИБОРЫ Учебное пособие для студентов специальности 151010 Металлургия черных металлов всех форм обучения Новотроицк 2007 2 Содержание 1. Основы метрологии и измерительной техники 1.1...»

«МОСКОВСКИЙ ГОСУДАРСТВЕННЫЙ СТРОИТЕЛЬНЫЙ УНИВЕРСИТЕТ КАФЕДРА МЕТАЛЛИЧЕСКИЕ КОНСТРУКЦИИ И КАФЕДРА ТЕХНОЛОГИИ ОРГАНИЗАЦИИ И УПРАВЛЕНИЯ В СТРОИТЕЛЬСТВЕ ЛАБОРАТОРНЫЕ РАБОТЫ к разделу Технология сварочных работ дисциплины Технология конструкционных материалов Методические указания для студентов специальности 270102 Промышленное и гражданское строительство Москва 2008 Методические указания предназначены для студентов строительных Вузов и факультетов, обучающихся по специальности 290300...»

«МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ, МОЛОДЕЖИ И СПОРТА УКРАИНЫ НАЦИОНАЛЬНАЯ МЕТАЛЛУРГИЧЕСКАЯ АКАДЕМИЯ УКРАИНЫ МЕТОДИЧЕСКИЕ УКАЗАНИЯ по выполнению курсовой работы Определение типа и параметров термической (структурной) обработки сплава Fe+.%С по дисциплине Теоретические основы технологических процессов термической обработки металлов для студентов направления 6.050401 - металлургия УТВЕРЖДЕНО на заседании Ученого совета академии Протокол №15 от 27.12.2011 Днепропетровск НМетАУ 2 УДК 621.78.012(07)...»

«МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ УКРАИНЫ НАЦИОНАЛЬНАЯ МЕТАЛЛУРГИЧЕСКАЯ АКАДЕМИЯ УКРАИНЫ Кафедра прикладной математики и вычислительной техники МЕТОДИЧЕСКИЕ УКАЗАНИЯ К ПРАКТИЧЕСКИМ ЗАНЯТИЯМ ПО ДИСЦИПЛИНЕ Системы управления базами данных для студентов направления 6.020105 Документоведение и информационная деятельность Днепропетровск 2012 МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ УКРАИНЫ НАЦИОНАЛЬНАЯ МЕТАЛЛУРГИЧЕСКАЯ АКАДЕМИЯ УКРАИНЫ Кафедра прикладной математики и вычислительной техники МЕТОДИЧЕСКИЕ...»

«Министерство образования и науки Российской Федерации Федеральное государственное автономное образовательное учреждение высшего профессионального образования Национальный исследовательский технологический университет МИСиС НОВОТРОИЦКИЙ ФИЛИАЛ Кафедра металлургических технологий А.Н. Шаповалов РАСЧЕТ ПАРАМЕТРОВ НЕПРЕРЫВНОЙ РАЗЛИВКИ СТАЛИ Методические указания для выполнения курсовой работы по дисциплине Разливка стали и специальная металлургия для студентов, обучающихся по направлению подготовки...»

«В. А. Москинов, Н. С. Звиденцова, И. Л. Швайко ОСНОВНЫЕ ПРОЦЕССЫ, АППАРАТЫ И ТЕХНОЛОГИИ МАТЕРИАЛЬНЫХ ПРОИЗВОДСТВ КУЗБАССА Кемерово 2010 ГОУ ВПО Кемеровский государственный университет Кафедра экспериментальной физики В. А. Москинов, Н. С. Звиденцова, И. Л. Швайко ОСНОВНЫЕ ПРОЦЕССЫ, АППАРАТЫ И ТЕХНОЛОГИИ МАТЕРИАЛЬНЫХ ПРОИЗВОДСТВ КУЗБАССА Учебное пособие по курсу Современные технологии Кузбасса Кемерово 2010 УДК 66.02/.09 ББК Л11(2Рос53-4Ке)я73+Л523я73+К3я73 М 82 Печатается по решению...»

«Министерство образования и науки Украины Донбасский горно-металлургический институт Кафедра “Строительство шахт и подземных сооружений” Методические указания к выполнению курсового проекта “Тампонаж обводненных горных пород” для студентов специальности 7.090304 Утверждено на заседании Методического Совета ДГМИ Протокол №от 2000г. Алчевск 2000 УДК 622.257 Методические указания к выполнению курсового проекта по дисциплине “Строительство подземных сооружений в сложных горногеологических условиях”...»

«УДК 669:519.216 ББК 34.3-02 М74 Электронный учебно-методический комплекс по дисциплине Моделирование процессов и объектов в металлургии подготовлен в рамках инновационной образовательной программы Многоуровневая подготовка специалистов и инновационное обеспечение горно-металлургических предприятий по сертификации, управлению качеством, технологической и экономической оценке минерального, вторичного и техногенного сырья, реализованной в ФГОУ ВПО СФУ в 2007 г. Рецензенты: Красноярский краевой...»

«Иркутский государственный технический университет Научно-техническая библиотека Автоматизированная система книгообеспеченности учебного процесса Рекомендуемая литература по учебной дисциплине Литейное производство цветных металлов № п/п Краткое библиографическое описание Электронный Гриф Полочный Кол-во экз. индекс 1) Воскобойников Виктор Григорьевич 669 126 экз. Общая металлургия : учеб. для вузов по направлению Металлургия / В. В76 Г. Воскобойников, В. А. Кудрин, А. М. Якушев. - Изд. 6-е,...»

«МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ федеральное государственное бюджетное образовательное учреждение высшего профессионального образования НАЦИОНАЛЬНЫЙ МИНЕРАЛЬНО-СЫРЬЕВОЙ УНИВЕРСИТЕТ ГОРНЫЙ ПРОГРАММА ВСТУПИТЕЛЬНОГО ЭКЗАМЕНА В МАГИСТРАТУРУ по направлению подготовки 220700 Автоматизация технологических процессов и производств (по отраслям) по магистерской программе Системы автоматизированного управления в металлургии САНКТ-ПЕТЕРБУРГ 2012 Программа вступительного экзамена в...»

«Федеральное агентство по образованию ГОУ ВПО Уральский государственный технический университет–УПИ Кафедра Теория металлургических процессов М.А. Спиридонов, В.А. Полухин ПРОЕКТИРОВАНИЕ МОЛЕКУЛЯРНО-ДИНАМИЧЕСКОГО И ДИФРАКЦИОННОГО ЭКСПЕРИМЕНТОВ ПО ИССЛЕДОВАНИЮ СТРУКТУРЫ И СВОЙСТВ ЖИДКИХ И ТВЕРДЫХ МЕТАЛЛИЧЕСКИХ СПЛАВОВ Учебное электронное текстовое издание Подготовлено кафедрой Теория металлургических процессов Научный редактор: проф., д-р. хим. наук Л.А. Жукова Методические указания к курсовой...»

«Федеральное агентство по образованию Российской Федерации ГОУ ВПО УРАЛЬСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ–УПИ М.А. Спиридонов Темы заданий по курсовой работе (проекту) по курсу Физикохимия жидких металлов и сплавов Учебное электронное текстовое издание Подготовлено кафедрой Теория металлургических процессов Екатеринбург 2007 Спиридонов М.А. Темы заданий по курсовой работе (проекту) Спиридонов, М.А. Темы заданий по курсовой работе (проекту) по курсу Физикохимия жидких металлов и...»

«МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ Государственное образовательное учреждение высшего профессионального образования НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ ТОМСКИЙ ПОЛИТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ ЮРГИНСКИЙ ТЕХНОЛОГИЧЕСКИЙ ИНСТИТУТ Утверждаю Зам. директора ЮТИ ТПУ по УР В.Л.Бибик __ 2011 г. РАСЧЕТ МАТЕРИАЛЬНОГО И ТЕПЛОВОГО БАЛАНСОВ КИСЛОРОДНО-КОНВЕРТЕРНОЙ ПЛАВКИ Методические указания к выполнению курсовой работы по курсу Теория и технология производства стали студентами очной и заочной...»

«УДК 620.9 ББК 31.27 С78 Электронный учебно-методический комплекс по дисциплине Методы и средства энергои ресурсосбережения подготовлен в рамках инновационной образовательной программы Создание инновационного центра подготовки специалистов мирового уровня в области автоматизированных электротехнологических комплексов для цветной металлургии и машиностроения, реализованной в ФГОУ ВПО СФУ в 2007 г. Рецензенты: Красноярский краевой фонд науки; Экспертная комиссия СФУ по подготовке...»

«Федеральное агентство по образованию Российской Федерации ГОУ ВПО Уральский государственный технический университет–УПИ Учебное электронное текстовое издание Домашнее задание по курсу Физическая химия Екатеринбург 2007 Спиридонов М.А. Домашнее задание по курсу Физическая химия УДК 669. 541 Составитель М.А. Спиридонов Научный редактор проф., д-р техн. наук Ю.П. Никитин Подготовлено кафедрой Теория металлургических процессов Домашнее задание по курсу Физическая химия / М.А. Спиридонов....»

«№ 2374 МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РФ ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ АВТОНОМНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ ТЕХНОЛОГИЧЕСКИЙ УНИВЕРСИТЕТ МИСиС Кафедра физики Д.Е. Капуткин В.В. Пташинский Ю.А. Рахштадт Физика Механика. Молекулярная физика Учебное пособие для практических занятий Часть 1 Под редакцией профессора Д.Е. Капуткина Допущено учебно-методическим объединением по образованию в области металлургии в качестве учебного...»

«Диагностика и профилактика отравлений сельскохозяйственной птицы: учебное пособие : [для вузов по специальностям 111100 Зоотехния и 111801 Ветеринария], 2012, 249 страниц, Борис Филиппович Бессарабов, Алексеева С.А., Клетикова Л.В., 5970420042, 9785970420041, ГЭОТАР-Медиа, 2012. Учебное пособие предназначено студентам высших учебных заведений, обучающихся по специальностям Ветеринария, Зоотехния. Опубликовано: 22nd July 2013 Диагностика и профилактика отравлений сельскохозяйственной птицы:...»

«Издания, отобранные экспертами для ЦНБ и институтов Екатеринбурга без библиотек УрО РАН (август 2013) Дата Институт Оценка Издательство Издание Эксперт ISBN Трыков, Ю. П., Гуревич, Л. М., Шморгун, В. Г. Титаностальные композиты и соединения : монография / Ю. Приобрести ISBN П. Трыков, Л. М. Гуревич, В. Г. Шморгун; М-во образования 31 Институт для Петрова Софья 978-5ВолгГТУ и науки Рос. Федерации, Волгогр. гос. техн. ун-т. - Волгоград : 8/9/ металлургии библиотеки Александровна 9948ВолгГТУ,...»

«МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ УКРАИНЫ НАЦИОНАЛЬНАЯ МЕТАЛЛУРГИЧЕСКАЯ АКАДЕМИЯ УКРАИНЫ РАБОЧАЯ ПРОГРАММА, методические указания и контрольные задания к изучению дисциплины Стандартизация, метрология и контроль для студентов специальности 7.090412 – термическая обработка металлов УТВЕРЖДЕНО на заседании Ученого совета академии Протокол № 1от 01.02.08 Днепропетровск НМетАУ 2008 УДК 621.82 + 621.74 Рабочая программа, методические указания и контрольные задания к изучению дисциплины...»

«МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ УКРАИНЫ НАЦИОНАЛЬНАЯ МЕТАЛЛУРГИЧЕСКАЯ АКАДЕМИЯ УКРАИНЫ В.И.Губинский МЕТАЛЛУРГИЧЕСКИЕ ПЕЧИ Утверждено на заседании Ученого совета академии как учебное пособие Днепропетровск НМетАУ 2006 2 УДК 669.046(076.3) Губинский В.И. Металлургические печи: Учеб. пособие. - Днепропетровск: НМетАУ, 2006. – 85 с. Настоящее учебное пособие предназначено для изучения металлургических печей как составной части дисциплины Теория и технология производства и обработки стали в рамках...»






 
© 2013 www.diss.seluk.ru - «Бесплатная электронная библиотека - Авторефераты, Диссертации, Монографии, Методички, учебные программы»

Материалы этого сайта размещены для ознакомления, все права принадлежат их авторам.
Если Вы не согласны с тем, что Ваш материал размещён на этом сайте, пожалуйста, напишите нам, мы в течении 1-2 рабочих дней удалим его.