WWW.DISS.SELUK.RU

БЕСПЛАТНАЯ ЭЛЕКТРОННАЯ БИБЛИОТЕКА
(Авторефераты, диссертации, методички, учебные программы, монографии)

 

Обоснование рациональных параметров и режимов работы оборудования для разработки грунта под магистральным трубопроводом

На правах рукописи

Семкин Дмитрий Сергеевич

ОБОСНОВАНИЕ РАЦИОНАЛЬНЫХ ПАРАМЕТРОВ И РЕЖИМОВ

РАБОТЫ ОБОРУДОВАНИЯ ДЛЯ РАЗРАБОТКИ ГРУНТА

ПОД МАГИСТРАЛЬНЫМ ТРУБОПРОВОДОМ

Специальность 05.05.04 – «Дорожные, строительные

и подъемно-транспортные машины»

АВТОРЕФЕРАТ

диссертации на соискание ученой степени кандидата технических наук

Омск – 2012

Работа выполнена в Федеральном государственном бюджетном образовательном учреждении высшего профессионального образования «Сибирская государственная автомобильно-дорожная академия (СибАДИ)»

кандидат технических наук, профессор

Научный руководитель:

Демиденко Анатолий Иванович …

Официальные оппоненты:

… … … Национальный исследовательский

Ведущая организация:

Иркутский государственный технический университет (НИ ИрГТУ)

Защита состоится … …. … г. в …… часов на заседании диссертационного совета Д 212.250.02 при ФГБОУ ВПО «Сибирская государственная автомобильно-дорожная академия (СибАДИ)» по адресу:

644080, г. Омск, проспект Мира, 5, ауд. 3124.

С диссертацией можно ознакомиться в библиотеке ФГБОУ ВПО «Сибирская государственная автомобильно-дорожная академия (СибАДИ)».

Автореферат размещен на сайте ВАК Министерства образования и науки РФ http://vak2.ed.gov.ru/catalogue и на сайте Сибирской государственной автомобильно-дорожной академии http://www.sibadi.org.

Отзывы на автореферат в двух экземплярах с подписью, заверенной печатью учреждения, просим направлять в адрес диссертационного совета.

Телефон для справок: (3812) 72-99-76, факс (3812) 65-03-23.

Автореферат разослан … …. … г.

Ученый секретарь диссертационного совета Д 212.250.02, д.т.н., проф. В.Н. Кузнецова

ОБЩАЯ ХАРАКТЕРИСТИКА РАБОТЫ

Актуальность работы. Россия располагает протяженной сетью магистральных трубопроводов, которые являются важной составляющей ее энергетической системы. Поддержание их в исправном состоянии необходимо для безопасного функционирования всего топливноэнергетического комплекса страны.




Для обеспечения современных темпов проведения ремонтных работ, их безопасности и качества ремонта требуется эффективное технологическое оборудование.

В настоящее время вскрытие магистральных трубопроводов при капитальном ремонте осуществляется в два этапа. Вначале, для исключения повреждения трубопровода производится предварительное вскрытие с оставлением слоя грунта, находящегося в непосредственной близости. Затем осуществляется окончательное удаление грунта, как правило, по всему периметру трубы. Сложность выполнения данной технологической операции обусловлена ограниченным доступом к разрабатываемому грунту, а также возможностью повреждения трубопровода.

Наиболее распространенным оборудованием, выполняющим окончательное удаление грунта, являются роторные подкапывающие машины, передвигающиеся по трубопроводу с помощью отталкивания от него. Однако данное техническое решение имеет ряд существенных недостатков. В процессе работы на трубопровод оказывается силовое воздействие, поэтому во избежание повреждения трубопровода сила тяги машины ограничивается, что не позволяет значительно повысить производительность. Низкая производительность подкапывающих машин является сдерживающим фактором для движения ремонтно-строительной колонны. Потребность машины во внешнем источнике энергии и привлечении дополнительных средств механизации затрудняет перебазировку на места локальных повреждений. Поэтому актуальной является задача разработки новой конструкции оборудования, которая позволит повысить эффективность производства земляных работ при капитальном ремонте магистральных трубопроводов.

Одним из направлений совершенствования конструкции является создание универсального сменного оборудования на базе одноковшового экскаватора. При этом для эффективной работы требуется создание оборудования непрерывного действия, процесс подкапывания грунта которым изучен недостаточно.

Цель работы – повышение эффективности оборудования для разработки грунта под магистральным трубопроводом за счет выбора его рациональных параметров и режимов работы.

Для достижения поставленной цели сформулированы следующие задачи:

1. Провести обзор и анализ существующих конструкций оборудования для разработки грунта под магистральным трубопроводом.

2. Разработать математическую модель взаимодействия рабочего органа 3. Провести экспериментальные исследования процесса копания грунта рабочим органом.

4. Разработать методику обоснования рациональных параметров и режимов работы оборудования.

Объектом исследования является конструктивно-технологическая система «цепной рабочий орган – грунтовый массив».

Предмет исследования – закономерности влияния параметров и режимов работы цепного рабочего органа на удельную энергоемкость процесса копания грунта.

Методы исследования. Обзор, анализ и обобщение результатов выполненных исследований; теоретические исследования базируются на положениях теории предельного равновесия и уравнениях теоретической механики; экспериментальные исследования основаны на использовании теории планирования и методах статистической обработки данных.





Научная новизна работы:

– разработана математическая модель процесса копания грунта цепным рабочим органом при удалении грунта из-под магистрального трубопровода и разработке траншеи;

– установлены зависимости удельной энергоемкости процесса копания грунта цепным рабочим органом от его геометрических параметров и режимов работы;

– экспериментально установлена зависимость коэффициента транспортирующей способности скребка от углов установки его транспортирующих поверхностей.

Практическая значимость:

– предложено техническое решение конструкции оборудования для разработки грунта под магистральным трубопроводом;

– предложена методика обоснования рациональных параметров и режимов работы оборудования;

– использование разработок и результатов исследований в учебном процессе по соответствующим специальностям и направлениям подготовки.

На защиту выносятся:

1. Математическая модель взаимодействия цепного рабочего органа с разрабатываемой средой.

2. Результаты экспериментальных исследований процесса подкапывания 3. Методика обоснования рациональных параметров и режимов работы оборудования.

Достоверность научных положений, изложенных в работе, подтверждается экспериментальными исследованиями, проведенными в лабораторных условиях.

Апробация работы. Основные результаты исследований доложены, обсуждены и одобрены на заседаниях кафедры «Техника для строительства и сервиса нефтегазовых комплексов и инфраструктур» СибАДИ 16.05.2011, 16.02.2012, на заседании экспертного совета факультета «Нефтегазовая и строительная техника» 15.03.2012, на V и VI Всероссийских научнопрактических конференциях студентов, аспирантов и молодых ученых «Развитие дорожно-транспортного комплекса и строительной инфраструктуры на основе рационального природопользования» (Омск, 2010 г., 2011 г.), на 63-й научно-технической конференции ГОУ «СибАДИ»

(Омск, 2009 г.), на 64-й научно-технической конференции ГОУ «СибАДИ» в рамках юбилейного международного конгресса, посвященного 80-летию СибАДИ «Креативные подходы в образовательной, научной и производственной деятельности» (Омск, 2010 г.), на III Всероссийской молодежной научно-технической конференции «Россия молодая: передовые технологии – в промышленность» (Омск, 2010 г.).

Реализация результатов работы. Результаты исследований приняты к внедрению в отраслевом институте «ОМСКГАЗТЕХНОЛОГИЯ» ОАО «Газпром», а также используются в учебном процессе на кафедре «Техника для строительства и сервиса нефтегазовых комплексов и инфраструктур» при проведении лабораторных работ по курсу «Машины для земляных работ».

Публикации. Основные положения и результаты диссертационной работы опубликованы в 7 статьях, из них 2 статьи в изданиях, рекомендованных ВАК РФ, получено 2 патента на полезную модель.

Структура работы. Диссертационная работа состоит из введения, четырех глав, основных результатов исследования и выводов, библиографического списка, включающего 73 наименования, и трех приложений. Работа изложена на 161 странице и включает 7 таблиц и рисунок.

СОДЕРЖАНИЕ РАБОТЫ

Во введении обосновывается актуальность темы, излагается научная новизна работы и практическая значимость, а также основные положения, выносимые на защиту.

В первой главе рассматриваются технологии ремонта магистральных трубопроводов, приводятся обзор и анализ существующих конструкций оборудования для их вскрытия.

Капитальный ремонт магистральных трубопроводов производится методом замены труб. На участках, не имеющих существенных дефектов стенки трубы, осуществляется только замена изоляционного покрытия. Для устранения локальных повреждений трубопровода применяется выборочный ремонт.

Вскрытие магистральных трубопроводов осуществляется в два этапа. На первом этапе производится разработка боковых траншей ниже нижней образующей трубопровода. Для исключения повреждения ремонтируемого трубопровода между стенкой трубы и землеройными механизмами экскаватора оставляется слой грунта (рис. 1).

Рис. 1. Профиль траншеи Рис. 2. Роторная подкапывающая Освобождение ремонтируемого участка трубопровода от оставшегося грунта производится с помощью подкапывающего оборудования, осуществляющего удаление грунта по всему периметру трубы, что позволяет обеспечить необходимый для ремонта доступ.

В настоящее время большинство работ по подкапыванию трубопроводов при капитальном ремонте протяженных участков осуществляется роторной машиной, передвигающейся по трубопроводу (рис. 2).

Недостатком данных машин является низкая производительность, что в сложных грунтовых условиях может являться сдерживающим фактором для движения ремонтно-строительной колонны. Производительность роторных машин ограничена тяговым усилием механизма передвижения, так как во избежание повреждения ремонтируемого трубопровода усилие фиксации на нем ограничивается.

Для обеспечения подачи электроэнергии машина имеет мобильную электростанцию, смонтированную на прицепе. Подъем, перестановка подкапывающей машины, а также буксировка электростанции производятся трубоукладчиком. Данные конструктивные особенности снижают мобильность оборудования, что затрудняет использование машины при ремонте локальных повреждений магистральных трубопроводов.

Машина имеет ограничения по использованию на участках, имеющих изгиб трубопровода, элементы запорной арматуры и в местах ответвлений.

Рабочее место оператора имеет низкие эргономические показатели, так как управление осуществляется с помощью ручного пульта в различных климатических условиях.

Одним из направлений совершенствования машин для подкапывания трубопроводов является создание оборудования непрерывного действия на базе одноковшового экскаватора. Компания «Komatsu» выпускает экскаватор с роторной подкапывающей машиной (рис. 3).

является ее полная автономность.

Однако оборудование не имеет жесткой связи с экскаватором, и тяговые возможности базовой машины не используются. Подача роторов в процессе копания осуществляется с трубопровода, что создает деформации и внутренние напряжения металла трубы. Рис. 3. Роторная подкапывающая Разработка грунта при ремонте локальных повреждений может осуществляться также одноковшовыми экскаваторами, оснащенными специальными устройствами для поворота рабочего органа. Данные конструкции осуществляют подкапывание без силового воздействия на трубопровод. Однако цикличность процесса копания и отсутствие технических устройств, исключающих возможность повреждения трубопровода, затрудняют работу оператора и снижают производительность.

В работе рассмотрены теоретические исследования процесса копания грунта, проведенные Н.Г. Домбровским, Ю.А. Ветровым, К.А. Артемьевым, В.И. Баловневым, Д.И. Федоровым, И.А. Недорезовым, А.М. Завьяловым и другими, а также исследования в области разработки грунтов рабочими органами непрерывного действия, выполненные З.Е. Гарбузовым, Л.Е. Подборским, Э.А. Джангуляном, Г.В. Родионовым, В.Г. Зедгенизовым, Г.В. Гумбургом, В.И. Ковалевым. Анализ работ показал, что процесс подкапывания грунта данными рабочими органами изучен недостаточно.

На основании проведенного обзора и анализа результатов были сформулированы цели и задачи исследования.

Во второй главе рассматривается процесс взаимодействия цепного рабочего органа с грунтом.

Как правило, цепные рабочие органы имеют несколько линий резания со скребками различной формы (рис. 4), что приводит к образованию стружки сложного сечения (рис. 5).

Толщина срезаемой стружки определяется соотношением скорости рабочего хода экскаватора и скорости движения цепи рабочего органа, а также шагом скребков и углом наклона рабочего органа относительно траектории движения экскаватора.

где р.х – скорость рабочего хода экскаватора, м/с; ц – скорость движения цепи рабочего органа, м/с; – угол наклона рабочего органа, град; z – количество скребков, расположенных между однотипными скребками, шт; t – шаг скребков, м.

В общем случае сила сопротивления копанию грунта цепным рабочим органом определяется зависимостью где Рi – сила сопротивления копанию скребком i-й формы, Н; ni – количество скребков i-й формы, одновременно взаимодействующих с грунтом, шт; m – количество линий резания, шт; Ртр – сила сопротивления транспортированию разработанного грунта, Н.

Общее уравнение для определения касательной силы сопротивления копанию грунта одним скребком можно представить следующим образом где РКрез – касательная сила сопротивления грунта резанию, Н; РКстр – касательная сила сопротивления перемещению стружки грунта по скребку, Н; РКин – касательная составляющая силы инерции разработанного грунта, Н.

В общем случае сила резания грунта расходуется на отделение стружки от массива режущей кромкой, на изгиб срезанной стружки и сдвиг грунта по боковым поверхностям.

Общее уравнение для определения касательной силы сопротивления грунта резанию можно представить следующим образом где РКсж – касательная сила сопротивления грунта сжатию режущей кромкой, Н; РКизн – касательная составляющая силы трения грунта по поверхности износа режущей кромки, Н; РКизг – касательная сила сопротивления срезаемой стружки изгибу, Н; РКсдв – касательная сила сопротивления грунта сдвигу по боковым поверхностям, Н; Кдин – коэффициент динамичности резания.

В процессе резания происходит смятие грунта поверхностями затупления режущей кромки. Для упрощения расчетов допустим, что затупление кромки происходит по дуге, аппроксимированной двумя линейными функциями (рис. 6).

Тогда касательная сила сопротивления грунта сжатию режущей кромкой где сж – предельное напряжение сжатия грунта, Па; – толщина затупления кромки, м; 0 – угол наклона грани к траектории движения скребка, град; L – длина режущей кромки, м; µ – коэффициент трения грунта по стали; – угол установки режущей кромки в плане, град.

Для более точного определения силы сопротивления грунта сжатию режущей кромкой можно произвести линеаризацию истинной формы затупления кромки несколькими отрезками.

В процессе резания также возникает сила трения грунта по поверхности износа режущей кромки (рис. 7). Допустим, что давление на площадку износа будет равным напряжению смятия грунта, тогда где изн – ширина поверхности износа, м.

После отделения стружки от массива грунта режущей кромкой, она продвигается по ножу скребка, при этом происходит ее изгиб (рис 8).

По данным Д.И. Федорова, при изгибе срезаемой стружки в зависимости от свойства грунта начало образования трещин смещается вдоль ножевой поверхности скребка в сторону режущей кромки либо от нее.

Изгиб стружки происходит аналогично изгибу консольной балки.

Минимальное условие, при котором произойдет данный изгиб где Мсопр. изг – момент сопротивления изгибу стружки грунта, Н·м; Мизг – изгибающий момент от действия силы сжатия грунта ножевой поверхностью скребка, Н·м.

Тогда длина площадки сжатия грунта, достаточная для изгиба срезаемой стружки где W – момент сопротивления поперечного сечения стружки, м3; р – предельное напряжение растяжения грунта, Па.

В пластичных грунтах значение Lсж достаточно велико, однако в более прочных грунтах площадь сжатия уменьшается, и начало распространения трещин смещается в сторону режущей кромки.

Таким образом, касательная сила сопротивления срезаемой стружки изгибу где – угол резания, град.

Сдвиг грунта по боковой поверхности происходит в месте изгиба срезаемой стружки. Площадь сдвига приближенно равна площади криволинейного участка боковой поверхности стружки грунта (рис. 9).

Тогда касательная сила сопротивления грунта сдвигу по боковым поверхностям с учетом бокового давления грунта где h – толщина срезаемой стружки возле боковой поверхности, м; – коэффициент бокового давления; µ2 – коэффициент трения грунта по грунту.

Согласно В.П. Станевскому, существует критическая скорость резания, обусловленная вязкостными свойствами грунта. В.П. Фомичев предлагает учитывать влияние скорости резания на силу сопротивления грунта разрушению с помощью расчетного коэффициента динамичности резания где р – скорость резания грунта, м/с; 0 – предельное касательное напряжение грунта, Па; – плотность грунта, кг/м3.

Таким образом, касательная сила сопротивления грунта резанию Аналогичным образом можно представить нормальную составляющую силы сопротивления грунта резанию При работе цепного рабочего органа по схеме подкапывания трубопроводов действие силы тяжести приводит к обрушению отделенной от массива грунта стружки на боковые поверхности скребка. Поэтому сила тяжести не препятствует продвижению стружки по скребку и не вызывает значительного трения грунта по его поверхности (рис. 10).

Рис. 10. Обрушение срезаемой Рис. 11. Продвижение стружки по Таким образом, для практических расчетов силу сопротивления перемещению стружки грунта по поверхности скребка в данном случае можно не учитывать.

При транспортировании разработанного грунта в процессе копания происходит изменение скорости его движения. Работа, совершаемая при изменении скорости движения разработанного грунта, приближенно равна кинетической энергии, которой обладает транспортируемый грунт в конце пути копания. Тогда касательная составляющая силы инерции разработанного одним скребком грунта где S – площадь срезаемой стружки, м2.

В случае равномерного распределения скребков разных форм по рабочему органу, количество скребков i-й формы, одновременно взаимодействующих с грунтом где Впод – ширина подкапывания под трубопроводом, м.

При производстве работ по подкапыванию трубопроводов рабочий орган располагается горизонтально, и подъем грунта не происходит. Однако перед скребком образуется призма волочения, которая создает силу сопротивления транспортированию разработанного грунта где – угол наклона транспортирующей поверхности к горизонту, град; Si – площадь срезаемой стружки скребком i-й формы, м2; g – ускорение свободного падения, м/с2.

Грунт, находящийся над рабочим органом, разрушается в процессе подкапывания. При этом создается дополнительный объем грунта, который транспортируется рабочим органом. Средняя толщина слоя грунта, расположенного между трубопроводом и рабочим органом где D – диаметр трубопровода, м; К – минимальное расстояние от рабочего органа до трубопровода, м.

Таким образом, касательная сила сопротивления копанию грунта цепным рабочим органом при производстве работ по подкапыванию трубопроводов где РКiрез – касательная сила сопротивления грунта резанию скребком i-й формы, Н.

Аналогичным образом можно представить нормальную составляющую силы сопротивления копанию грунта цепным рабочим органом при производстве работ по подкапыванию трубопроводов где РNiрез – нормальная составляющая силы сопротивления грунта резанию скребком i-й формы, Н.

При работе цепного рабочего органа по продольной схеме копания возникает также сила сопротивления перемещению срезаемой стружки грунта по поверхности скребка (рис. 11).

где Lн – длина ножевой системы, м; Lс – длина поверхности скребка, м.

Сила сопротивления транспортированию разработанного грунта при продольном копании возникает также в результате подъема грунта из забоя.

где Н – глубина траншеи, м.

Таким образом, касательная сила сопротивления копанию грунта цепным рабочим органом при продольном копании РКкоп = (РКiрез+ Si · · g ·[Liн · µ · cos( – )· cos + Liс · µ · cos( – )· cos ]+ где Liн – длина ножевой системы скребка i-й формы, м; Liс – длина поверхности скребка i-й формы, м.

Аналогичным образом можно представить нормальную составляющую силы сопротивления копанию грунта цепным рабочим органом при продольном копании РNкоп = (РNiрез + Si · · g · µ ·[Liн · cos ( – )· sin + Liс · cos ( – )· sin ]) · Предложенные уравнения (18), (19), (22), (23) позволяют определять силу сопротивления копанию грунта цепным рабочим органом в зависимости от следующих параметров: физико-механических характеристик грунта, параметров скребков, режимов работы оборудования, параметров откапываемой траншеи, схемы копания (при подкапывании трубопроводов и разработке траншеи).

В третьей главе изложена методика проведения и результаты экспериментальных исследований.

Эксперимент проводился в грунтовом канале на специально изготовленной установке (рис. 12), которая состоит из направляющей балки 1, отклоняющих блоков 2, кронштейнов крепления 3, тензометрических тележек 4, держателей 5, скребков 6 (рис. 13), тягового каната 7 и тензометрической тяги 8.

Рис. 12. Схема экспериментальной Рис. 13. Варианты исполнения Конструкция экспериментальной установки позволяет изменять следующие параметры: глубину забоя, глубину подкапывания, толщину срезаемой стружки, угол установки рабочего органа в плане, угол резания, угол установки скребков в плане, скорость движения скребков.

Параметры грунта: тяжелый суглинок; влажность 12 15 %, число ударов плотномера ДорНИИ – 5 6, плотность 2000 кг/м3, коэффициент сцепления 0,025 МПа, угол внутреннего трения 28 33.

Экспериментальные исследования проводились при глубине забоя 0,35 м и 1,55 м, что соответствует толщине слоя обрушения грунта при работе оборудования для подкапывания трубопроводов соответственно под трубой и сбоку от трубопровода для трубы диаметром 720 мм (рис. 14, 15).

В результате проведенного эксперимента были определены численные значения силы сопротивления копанию скребком при различной толщине срезаемой стружки, скорости его движения и угле резания, а также объем транспортируемого грунта в зависимости от углов установки боковых поверхностей и поверхности режущей кромки.

Наиболее значительное влияние на силу сопротивления копанию грунта оказывает изменение толщины срезаемой стружки (рис. 16).

Сила сопротивления копанию, Н В ходе проведения эксперимента было установлено, что в процессе транспортирования при подкапывании, главным образом, задействованы боковые грани скребков, на которые ссыпается разработанный грунт.

Отсутствие значительного наклона рабочего органа относительно горизонта способствует удержанию грунта на рабочих плоскостях скребка, что позволяет эффективно выносить разработанный грунт (рис. 17).

Наибольшее влияние на процесс транспортирования грунта оказывает изменение угла установки боковых поверхностей скребка (табл.).

поверхности установки, град В ходе проведения эксперимента фиксировались очертания линий разрушения грунта над рабочим органом. При толщине слоя грунта 0,15 м максимальная величина нависания составила 0,12 м. При толщине слоя грунта 1,35 м разрушение происходило постепенно, с образованием комков грунта размером не более 0,30 м. Максимальное нависание грунта составило 0,27 м (рис. 18).

Необходимое количество повторения опытов для обеспечения требуемой точности измерений, а также обработка полученных данных производились с использованием методов математической статистики.

Проверка воспроизводимости данных эксперимента с помощью критерия Кохрена показала, что эксперимент воспроизводим и полученные данные пригодны для аппроксимации функции.

Для проверки адекватности аналитических исследований результаты теоретического расчета сравнивались с экспериментальными данными (рис. 19-21).

Сила сопротивления копанию Н Сила сопротивления копанию, Н Проверка адекватности математической модели осуществлялась по критерию Стьюдента, а также RS-критерию. Точность оценивалась с помощью средней относительной ошибки.

Проверка показала, что исследуемый параметр подчиняется нормальному закону распределения, а расхождения являются незначимыми.

Таким образом, математическая модель не имеет значительных расхождений с экспериментальными данными. Максимальная средняя относительная ошибка математической модели составляет 7,1 %.

В четвертой главе на основе результатов проведенных теоретических и экспериментальных исследований предложено техническое решение конструкции оборудования для подкапывания трубопроводов и предложена методика обоснования рациональных параметров и режимов его работы. Разработку грунта предлагается производить цепным Рис. 22. Оборудование для рабочим органом, установленным на базе одноковшового экскаватора (рис. 22). Данная конструктивная схема обладает достаточной подвижностью для установки рабочего органа в необходимое положение, обеспечивает непрерывность процесса копания, а также позволяет осуществлять подкапывание без силового воздействия на трубопровод (рис. 23).

После заглубления рабочего органа подача осуществляется движением базовой машины, при этом перемещений стрелы экскаватора не требуется.

Наличие упорного ролика предотвращает повреждение трубопровода рабочим органом (рис. 24).

Рис. 23. Подкапывание Рис. 24. Заглубление рабочего В зависимости от диаметра трубопровода рабочий орган может быть установлен как перпендикулярно к оси трубопровода, так и под углом, что позволяет сократить количество типоразмеров рабочего органа для удаления грунта из-под магистральных трубопроводов до двух единиц.

Предлагаемая конструкция позволяет также разрабатывать траншеи, формировать откосы, выполнять земляные работы в стесненных условиях, вблизи стен и фундаментов (рис. 25, 26).

Рис. 25. Разработка траншеи Рис. 26. Подвижность рабочего Методика, предложенная в работе, позволяет определять рациональные параметры и режимы работы оборудования (рис. 27).

Параметры рабочего органа определяются с учетом диаметра подкапываемого трубопровода в соответствии с требованиями нормативных документов к данной технологической операции.

Скорость рабочего хода экскаватора устанавливается, исходя из обеспечения требуемой производительности, обеспечивающей согласованное движение ремонтно-строительной колонны, с учетом мощности двигателя экскаватора.

Затем определяется скорость движения цепи, обеспечивающая минимальную удельную энергоемкость процесса копания грунта (рис. 28, 29).

Удельная энергоемкость, кВтч/м Рациональное соотношение скорости движения цепи рабочего органа и скорости рабочего хода экскаватора зависит от угла установки рабочего органа в плане, который определяется геометрическими параметрами рабочего органа и диаметром подкапываемого трубопровода (рис. 30, 31).

Рациональное отношение vц/vр.х.

Таким образом, методика обоснования рациональных параметров и режимов работы оборудования для разработки грунта под магистральным трубопроводом позволяет определить основные параметры рабочего органа, учитывая особенности эксплуатации экскаватора в комплекте машин, производящего ремонтные работы, что способствует эффективной работе всей ремонтно-строительной колонны.

ОСНОВНЫЕ РЕЗУЛЬТАТЫ И ВЫВОДЫ

В результате проведенных теоретических и экспериментальных исследований процесса взаимодействия цепного рабочего органа с грунтом была разработана методика обоснования рациональных параметров и режимов работы оборудования для разработки грунта под магистральным трубопроводом. В качестве критерия эффективности принята удельная энергоемкость процесса копания грунта.

На основании проведенных исследований были сделаны следующие выводы:

1. Проведен обзор и анализ существующих конструкций. Предложено и научно обосновано эффективное техническое решение конструкции оборудования с цепным рабочим органом на базе одноковшового экскаватора.

2. Разработана математическая модель взаимодействия цепного рабочего органа с грунтом, которая позволяет установить закономерности влияния параметров рабочего органа, режимов его работы и свойств разрабатываемого грунта на процесс копания. Для снижения удельной энергоемкости копания при изменении скорости рабочего хода необходимо пропорциональное изменение скорости движения цепи.

Рациональное соотношение ц/р.х составляет 8 16.

3. Проведены экспериментальные исследования процесса копания грунта рабочим органом. Наиболее значительное повышение транспортирующей способности скребка наблюдается при увеличении угла установки его боковых поверхностей. Так при изменении данного угла от 0 до 10 транспортирующая способность повышается на 30 %.

4. Разработана методика обоснования рациональных параметров и режимов работы оборудования. Предлагается два типоразмера рабочего органа для разработки грунта под магистральными трубопроводами диаметром 400 1400 мм, при этом угол установки рабочего органа в плане изменяется в пределах 42 90.

Основные положения диссертации опубликованы в следующих работах:

В изданиях, рекомендованных ВАК Минобрнауки РФ:

1. Демиденко А.И., Семкин Д.С. Сменное рабочее оборудование одноковшового экскаватора для подкопа трубопроводов // Механизация строительства. М.: Креативная экономика, 2011. №4. С. 10-13.

2. Демиденко А.И., Семкин Д.С. Математическая модель взаимодействия цепного рабочего органа с грунтом // Вестник Сибирской государственной автомобильно-дорожной академии. Омск: СибАДИ, 2011. №4. С. 5-8.

В других изданиях:

3. Летопольский А.Б., Семкин Д.С. Лабораторная установка для проведения эксперимента по определению рациональных параметров траншейного цепного экскаватора // Материалы V Всероссийской научно-практической конференции студентов, аспирантов и молодых ученых «Развитие дорожно-транспортного комплекса и строительной инфраструктуры на основе рационального природопользования». Омск: СибАДИ, 2010. Кн. 1.

С. 265-267.

4. Демиденко А.И., Семкин Д.С. Экспериментальные исследования по определению рациональных параметров рабочего оборудования одноковшового экскаватора для подкопа трубопроводов // Материалы 64-й научно-технической конференции ГОУ «СибАДИ» в рамках юбилейного международного конгресса, посвященного 80-летию СибАДИ «Креативные подходы в образовательной, научной и производственной деятельности». Омск: СибАДИ, 2010. Кн. 1. С. 240-243.

5. Демиденко А.И., Семкин Д.С. Сменное рабочее оборудование одноковшового экскаватора // Материалы III Всероссийской молодежной научно-технической конференции «Россия молодая: передовые технологии – в промышленность». Омск: ОмГТУ, 2010. Кн. 1. С. 27-31.

6. Семкин Д.С. Сменное рабочее оборудование одноковшового экскаватора для подкопа трубопроводов // Тезисы XI научно-технической конференции молодежи ОАО «Транснефть». Омск: ОмГТУ, 2010. С. 18-19.

7. Демиденко А.И., Семкин Д.С. Определение рациональных параметров оборудования одноковшового экскаватора для подкапывания трубопроводов // Материалы Всероссийской 65-й научно-технической конференции ФГБОУ ВПО «СибАДИ» (с международным участием) «Ориентированные фундаментальные и прикладные исследования – основа модернизации и инновационного развития архитектурностроительного и дорожно-транспортного комплексов России». Омск:

СибАДИ, 2011. Кн. 2. С. 347-351.

8. Пат. 90461 Российская Федерация, МПК Е 02 F 3/08. Цепной экскаватор / Демиденко А.И., Семкин Д.С.; заявитель и патентообладатель Сибирская государственная автомобильно-дорожная академия «СибАДИ». – № 2009112579/22; заявл. 06.04.2009; опубл. 10.01.2010, Бюл. №1. – 3 с.: ил.

9. Пат. 106265 РФ, МПК Е 02 F 1/00. Стенд для определения рациональных параметров траншейного цепного экскаватора / Демиденко А.И., Семкин Д.С. Летопольский А.Б.; заявитель и патентообладатель Сибирская государственная автомобильно-дорожная академия «СибАДИ». – № 2010154282/03; заявл. 29.12.2010; опубл. 10.07.2011, Бюл. № 19. – 3 с.: ил.



Похожие работы:

«Кудрин Иван Сергеевич ВЛИЯНИЕ ПАРАМЕТРОВ ДВИЖЕНИЯ ЛЮДСКИХ ПОТОКОВ ПРИ ПОЖАРЕ НА ОБЪЕМНО-ПЛАНИРОВОЧНЫЕ РЕШЕНИЯ ВЫСОТНЫХ ЗДАНИЙ Специальность: 05.26.03 – Пожарная и промышленная безопасность (технические наук и, отрасль строительство) АВТОРЕФЕРАТ диссертации на соискание ученой степени кандидата технических наук Москва – 2013 Работа выполнена в Академии Государственной противопожарной службы МЧС России на кафедре пожарной безопасности в строительстве Научный руководитель :...»

«Сырадоев Дмитрий Владимирович Управление развитием машиностроительного комплекса региона Специальность 08.00.05 – Экономика и управление народным хозяйством (экономика, организация и управление предприятиями, отраслями, комплексами – промышленность; региональная экономика) АВТОРЕФЕРАТ диссертации на соискание ученой степени кандидата экономических наук Ижевск– 2011 Работа выполнена в Институте экономики Уральского отделения РАН (Удмуртский филиал) Научный руководитель :...»

«ЛЫСАК ГАЛИНА ВЛАДИЛЕНОВНА СОЗДАНИЕ И ФИЗИКО-ХИМИЧЕСКОЕ ИССЛЕДОВАНИЕ СИСТЕМ НАНОЧАСТИЦЫ (Ag, TiO2, SnO2, TiO2/SnO2) – ПОЛИПРОПИЛЕНОВЫЙ ВОЛОКНИСТЫЙ НОСИТЕЛЬ 02.00.04 – физическая химия Автореферат диссертации на соискание ученой степени кандидата химических наук Томск 2011 Работа выполнена в ГОУ ВПО Томский государственный архитектурностроительный университет и ОСП Сибирский физико-технический институт им. академика В.Д. Кузнецова Томского государственного университета. Научный...»

«Белоусов Евгений Александрович Разработка способов проведения и крепления капитальных выработок в удароопасных зонах месторождений Горной Шории Специальность 25.00.22 — Геотехнология (подземная, открытая и строительная) Автореферат диссертации на соискание ученой степени кандидата технических наук Новосибирск-2006 2 Работа выполнена в Институте горного дела Сибирского отделения Российской Академии наук Научный руководитель — доктор технических наук Еременко Андрей Андреевич...»

«ЛАВРЕНКО Сергей Александрович ОБОСНОВАНИЕ ПАРАМЕТРОВ ИСПОЛНИТЕЛЬНЫХ ОРГАНОВ КОМПЛЕКСА ДЛЯ ПРОВЕДЕНИЯ ВСПОМОГАТЕЛЬНЫХ ВЫРАБОТОК В УСЛОВИЯХ КЕМБРИЙСКИХ ГЛИН Специальность 05.05.06 – Горные машины Автореферат диссертации на соискание ученой степени кандидата технических наук САНКТ-ПЕТЕРБУРГ – 2014 Работа выполнена в федеральном государственном бюджетном образовательном учреждении высшего профессионального образования Национальный минерально-сырьевой университет Горный Научный...»

«Анохин Виктор Александрович РОССИЙСКО-АМЕРИКАНСКОЕ СОТРУДНИЧЕСТВО ПО ПРОГРАММЕ ФИЗИЧЕСКОЙ ЗАЩИТЫ, УЧЕТА И КОНТРОЛЯ ЯДЕРНЫХ МАТЕРИАЛОВ НА СИБИРСКОМ ХИМИЧЕСКОМ КОМБИНАТЕ (1995-1999 гг.) Специальность 07.00.10 – История наук и и техники АВТОРЕФЕРАТ диссертации на соискание ученой степени кандидата исторических наук Томск 2010 Работа выполнена на кафедре мировой политики ГОУ ВПО Томский государственный университет Научный руководитель : кандидат исторических наук, доцент...»

«Сергеев Сергей Александрович ПОВЫШЕНИЕ ЭФФЕКТИВНОСТИ АВТОМАТИЗИРОВАННОГО ПРОЕКТИРОВАНИЯ ЦЕПНЫХ МУФТ НА ОСНОВЕ СОЗДАНИЯ ИХ МАТЕМАТИЧЕСКОЙ МОДЕЛИ Специальность 05.13.06 – Автоматизация и управление технологическими процессами и производствами (технические системы) АВТОРЕФЕРАТ диссертации на соискание ученой степени кандидата технических наук Курск 2007 2 Работа выполнена на кафедре Машиностроительные технологии и оборудование ГОУ ВПО Курский государственный технический...»

«Хисамутдинов Халит Ислахетдинович МОДЕЛИ РЕАЛИЗАЦИИ МУНИЦИПАЛЬНОЙ ВЛАСТИ В РОССИЙСКОЙ ФЕДЕРАЦИИ Специальность 12.00.02 – конституционное право; муниципальное право Автореферат диссертации на соискание ученой степени кандидата юридических наук Казань - 2007 2 Диссертация выполнена на кафедре Государственного строительства и теории права Государственного образовательного учреждения высшего профессионального образования Башкирская академия государственной службы и управления при...»

«Джинджолия Оксана Александровна ИНСТИТУЦИОНАЛЬНЫЕ ФОРМЫ ОБЕСПЕЧЕНИЯ УСТОЙЧИВОСТИ МАЛОГО ПРЕДПРИНИМАТЕЛЬСТВА В УСЛОВИЯХ ЭКОНОМИЧЕСКОГО КРИЗИСА 08.00.05 – Экономика и управление народным хозяйством: 8. Экономика предпринимательства АВТОРЕФЕРАТ диссертации на соискание ученой степени кандидата экономических наук Волгоград – 2012 Работа выполнена в Федеральном государственном бюджетном образовательном учреждении высшего профессионального образования Волгоградский государственный...»

«Платонова Анастасия Валерьевна ПРОБЛЕМА ОТВЕТСТВЕННОСТИ В ФИЛОСОФИИ ТЕХНИКИ (ИСТОРИКО-ФИЛОСОФСКАЯ РЕКОНСТРУКЦИЯ) 09.00.03 – история философии АВТОРЕФЕРАТ диссертации на соискание ученой степени кандидата философских наук Томск 2007 2 Работа выполнена на кафедре истории философии и логики философского факультета ГОУ ВПО Томский государственный университет Научный руководитель : доктор философских наук, профессор Найман Евгений Артурович Официальные оппоненты : доктор...»

«РОГОВ ВАЛЕРИЙ ВАЛЕРЬЕВИЧ ТЕПЛООБМЕННЫЕ ПРОЦЕССЫ В КРИОЛИТОЗОНЕ И ИХ ИСПОЛЬЗОВАНИЕ ПРИ ОПТИМИЗАЦИИ ТЕХНОЛОГИИ КРЕПЛЕНИЯ СКВАЖИН Специальность 25.00.15 – Технология бурения и освоения скважин Автореферат диссертации на соискание ученой степени кандидата технических наук Ухта, 2013 Диссертация выполнена на кафедре бурения Ухтинского государственного технического университета. Научный руководитель : Чупров Илья Федорович - доктор технических наук Официальные оппоненты : Быков...»

«КИСЕЛЕВ Дмитрий Александрович ПРОЧНОСТЬ И ДЕФОРМАТИВНОСТЬ АНКЕРНОГО КРЕПЕЖА ПРИ ДЕЙСТВИИ СТАТИЧЕСКОЙ И ДИНАМИЧЕСКОЙ НАГРУЗОК Специальность 05.23.01 Строительные конструкции, здания и сооружения АВТОРЕФЕРАТ диссертации на соискание ученой степени кандидата технических наук Москва 2010 Работа выполнена в Центральном научно-исследовательском институте строительных конструкций им. В.А. Кучеренко ОАО НИЦ Строительство НАУЧНЫЙ РУКОВОДИТЕЛЬ кандидат технических наук Грановский...»

«АБДУКАМИЛОВ Шавкат Шухратович НЕСУЩАЯ СПОСОБНОСТЬ ЗЕМЛЯНОГО ПОЛОТНА, ОТСЫПАННОГО БАРХАННЫМИ ПЕСКАМИ, ВОСПРИНИМАЮЩИМИ ВИБРОДИНАМИЧЕСКУЮ НАГРУЗКУ Специальность 05.22.06 – Железнодорожный путь, изыскание и проектирование железных дорог Автореферат диссертации на соискание ученой степени кандидата технических наук САНКТ-ПЕТЕРБУРГ 2011 Работа выполнена на кафедре Управление и технология строительства Федерального государственного бюджетного образовательного учреждения высшего...»

«ПЕЛЫМСКИЙ Александр Александрович ИССЛЕДОВАНИЕ ВОЗДЕЙСТВИЯ ЛЕСОЗАГОТОВИТЕЛЬНОЙ ТЕХНИКИ НА УКРЕПЛЕННЫЙ ПОРУБОЧНЫМИ ОСТАТКАМИ УЧАСТОК ТРЕЛЕВОЧНОГО ВОЛОКА 05.21.01 – Технология и машины лесозаготовок и лесного хозяйства автореферат диссертации на соискание ученой степени кандидата технических наук Санкт-Петербург 2013 год 2 Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования Санкт-Петербургский государственный лесотехнический...»

«ФЛЮГЕЛЬ Франк МЕТОДИКА ПОСТРОЕНИЯ ОБОБЩЕННЫХ МАТЕМАТИЧЕСКИХ МОДЕЛЕЙ ГРУЗОПОДЪЕМНЫХ КРАНОВ С ГРУЗОМ НА ПРОСТРАНСТВЕННОМ КАНАТНОМ ПОДВЕСЕ Специальность 05.05.04 - Дорожные, строительные и подъемно - транспортные машины Автореферат диссертации на соискание ученой степени кандидата технических наук Санкт - Петербург 2002 Работа выполнена в Санкт-Петербургском государственном техническом университете. Научный руководитель : доктор технических наук, профессор А. Н. Орлов...»

«Маштакова Наталья Андреевна Договор об участии в долевом строительстве многоквартирных домов и иных объектов недвижимости: теория, практика, перспективы развития Специальность 12.00.03- Гражданское право; предпринимательское право; семейное право; международное частное право Автореферат диссертации на соискание ученой степени кандидата юридических наук Екатеринбург - 2012 Работа выполнена на кафедре гражданского права Федерального государственного бюджетного образовательного...»

«КАТИЛОВ ЕВГЕНИЙ КОНСТАНТИНОВИЧ МЕХАНИЗМ ФУНКЦИОНИРОВАНИЯ ВРЕМЕННОГО ВИРТУАЛЬНОГО ЭКОНОМИЧЕСКОГО КЛАСТЕРА НА БАЗЕ ПРОМЫШЛЕННОГО ПРЕДПРИЯТИЯ (на примере ОАО Нижнекамскшина) Специальность 08.00.05 Экономика и управление народным хозяйством (экономика, организация и управление предприятиями, отраслями, комплексами. Промышленность) АВТОРЕФЕРАТ диссертации на соискание ученой степени кандидата экономических наук Санкт-Петербург - 2014 Диссертационная работа выполнена в федеральном...»

«ГУМЕРОВ АНВАР ВАЗЫХОВИЧ ФОРМИРОВАНИЕ СТРАТЕГИИ РАЗВИТИЯ ПРЕДПРИНИМАТЕЛЬСКИХ СТРУКТУР С ИСПОЛЬЗОВАНИЕМ ИНСТРУМЕНТОВ МЕНЕДЖМЕНТА КАЧЕСТВА Специальность 08.00.05 – Экономика и управление народным хозяйством (экономика предпринимательства; стандартизация и управление качеством продукции) АВТОРЕФЕРАТ диссертации на соискание ученой степени доктора экономических наук Казань - 2013 Работа выполнена на кафедре территориальной экономики ФГАОУ ВПО Казанский (Приволжский) федеральный...»

«БУРАВЧЕНКО Ирина Леонидовна Конституционно-правовой статус избирателя в Российской Федерации Специальность 12.00.02 - конституционное право; муниципальное право АВТОРЕФЕРАТ диссертации на соискание ученой степени кандидата юридических наук Москва - 2010 2 Работа выполнена и рекомендована к защите на кафедре государственного строительства и права Федерального государственного образовательного учреждения высшего профессионального образования Российская академия государственной...»

«Пелымская Ольга Викторовна ФОРМИРОВАНИЕ МЕХАНИЗМА УСТОЙЧИВОГО РАЗВИТИЯ СТРОИТЕЛЬНОГО ПРЕДПРИЯТИЯ Специальность 08.00.05 – Экономика и управление народным хозяйством (экономика, организация и управление предприятиями, отраслями, комплексами: строительство) Автореферат диссертации на соискание ученой степени кандидата экономических наук Санкт-Петербург – 2012 2 Работа выполнена в Федеральном государственном бюджетном образовательном учреждении высшего профессионального...»








 
© 2013 www.diss.seluk.ru - «Бесплатная электронная библиотека - Авторефераты, Диссертации, Монографии, Методички, учебные программы»

Материалы этого сайта размещены для ознакомления, все права принадлежат их авторам.
Если Вы не согласны с тем, что Ваш материал размещён на этом сайте, пожалуйста, напишите нам, мы в течении 1-2 рабочих дней удалим его.