WWW.DISS.SELUK.RU

БЕСПЛАТНАЯ ЭЛЕКТРОННАЯ БИБЛИОТЕКА
(Авторефераты, диссертации, методички, учебные программы, монографии)

 

На правах рукописи

Торгонин Евгений Юрьевич

РАЗРАБОТКА МЕТОДОВ И АЛГОРИТМОВ ОБРАБОТКИ

ИНФОРМАЦИИ ПРИ ВИЗУАЛИЗАЦИИ ЖИДКОСТЕЙ В СИСТЕМАХ

ВИРТУАЛЬНОЙ РЕАЛЬНОСТИ

Специальность 05.13.01 - Системный анализ, управление и обработка

информации (в наук

е и технике)

АВТОРЕФЕРАТ

диссертации на соискание ученой степени кандидата технических наук Белгород – 2014

Работа выполнена в Федеральном государственном бюджетном образовательном учреждении высшего профессионального образования «Белгородский государственный технологический университет имени В.Г.Шухова», на кафедре программного обеспечения вычислительной техники и автоматизированных систем.

Научный руководитель: кандидат технических наук, доцент, Полунин Александр Иванович

Официальные оппоненты: Ковалев Сергей Михайлович, доктор технических наук, профессор кафедры «Автоматика и телемеханика на железнодорожном транспорте», Ростовский государственный университет путей сообщения, г. Ростов Михелев Михаил Владимирович, кандидат технических наук, доцент кафедры информационных систем управления, Белгородский государственный национальный исследовательский университет, г. Белгород

Ведущая организация: Федеральное государственное бюджетное учреждение науки Институт системного анализа Российской академии наук

Защита состоится 11 июня 2014 года в 15 часов 00 минут на заседании диссертационного совета Д 212.015.10 на базе ФГАОУ ВПО «Белгородский государственный национальный исследовательский университет» (НИУ «БелГУ»), по адресу: 308015 г. Белгород, ул. Победы, д. 85, корп. 15, ауд. 3-8.

С диссертацией можно ознакомиться в научной библиотеке и на сайте ФГАОУ ВПО «Белгородский государственный национальный исследовательский университет» (режим доступа: http://www.bsu.edu.ru).

Автореферат размещен на сайте ВАК при министерстве образования и науки РФ (режим доступа: http://vak2.ed.gov.ru).

Автореферат разослан « » апреля 2014 г.





Ученый секретарь диссертационного совета Д 212.015. доктор технических наук С.П. Белов

ОБЩАЯ ХАРАКТЕРИСТИКА РАБОТЫ

Актуальность работы. В настоящее время происходит бурное развитие технологий, постоянное усложнение техники, автоматизированных систем и производств. В таких условиях особое значение приобретают технологии компьютерного моделирования и эффективной подготовки персонала, способствующие быстрому усвоению и обработки информации, созданию средств и методов удобного е представления в понятном для человека формате.

Актуальной становится задача создания систем виртуальной реальности, так как известно, что визуальное представление информации способствует е наиболее быстрому усвоению, позволяет эффективно обрабатывать сложную информацию.

В тоже время проблема создания моделей описания и визуализации динамики жидких сред является одной из наиболее сложных и центральных при реализации в компьютерной графике реального времени. Поэтому задача создания алгоритмов описания динамики и визуализации жидких сред, достаточно эффективных для использования в современных вычислительных системах является актуальной.

Использование систем виртуальной реальности, таких как морские симуляторы, уменьшает необходимость в дорогостоящих экспериментах, испытаниях, обучении. Создание высоко реалистичных тренажров позволяет существенно снизить затраты на подготовку высококвалифицированных кадров при повышении общего качества обучения за счт высоких возможностей воспроизведения множества внештатных ситуаций.

Симуляторы и тренажры управляются достаточно комплексной логикой и состоят из множества подсистем, как показано на рисунке 1. В данном исследовании интересны блоки «визуализации», «моделирования внешней среды и природных аномалий» и «моделирования динамики объекта». Эти блоки как правило имеют свои собственные, имитационные модели и лишь синхронизируются при работе.

Поэтому такие системы сложны в производстве и настройке. Создание каждого нового сценария для воспроизведения требует больших трудозатрат и часто ручной работы.

В целях сокращения времени на разработку и упрощение в эксплуатации появляется естественное желание автоматизировать всю работу. Решением данной проблемы может быть создание единой модели описания жидкой среды, используемой как при визуализации, так и при расчте различных сил и параметров в жидкости, которая может иметь обратную связь с блоком моделирования динамики объекта (например, корабля).

Математические основы описания жидких сред, были заложены такими исследователями, как Андреев Б.М., Глуховский Б.Х., Давидан И.Н., Крылов Ю.М., Пирсон Д. и другие. И в настоящее время создатся множество алгоритмов обработки информации при описании жидкостей для систем виртуальной реальности, проявляется значительный интерес со стороны исследователей: Беляева В.С., Бэкера М., Крячко Ю., Митчела Дж., Мюллера М., Тессендорфа Дж., Бродкорба А., Хэссельмана К., Фостера Н. и других.

Рисунок 1. Структурная схема системы виртуальной реальности Разработанные данными авторами модели и методы являются либо имитационными, либо использующими гидродинамические модели, что ограничивает область описания среды небольшими объмами из-за высокой вычислительной сложности.





Создание систем виртуальной реальности требует использования больших вычислительных ресурсов и, следовательно, использования современных многопроцессорных, высоко распараллеленных вычислительных систем. Возрастает важность правильной организации и оптимизации вычислительных процессов, в том числе параллельных вычислений.

В таких условиях задача организации вычислительного процесса является довольно сложной, зачастую не существует эффективных алгоритмов параллельных вычислений, эффективно загружающих все доступные узлы и процессоры. Возникает задача создания эффективных алгоритмов для подобных систем.

Цель диссертационной работы. Целью настоящей работы является совершенствование подсистем представления и визуализации жидкостей для систем виртуальной реальности за счт создания новых моделей и алгоритмов обработки информации, обеспечивающих возможность построения высоко реалистичных изображений в режиме реального времени при использовании моделей вычислительной гидродинамики.

Для достижения поставленной цели были сформулированы и решены следующие задачи:

1. Анализ существующих моделей, методов и алгоритмов обработки данных при визуализации жидких сред в системах виртуальной реальности;

2. Разработка модели представления среды, новых методов и алгоритмов синтеза поверхностного волнения, а также динамики жидкой среды;

3. Разработка методов обработки информации и параллельных алгоритмов оптимизации процедуры отображения жидких сред для повышения эффективности управления в системах виртуальной реальности;

4. Программная реализация разработанных алгоритмов визуализации жидкостей для гетерогенных систем;

5. Сравнительная оценка эффективности и адекватности предлагаемых методов и алгоритмов.

Объектом исследования являются модельные представления поверхности жидких сред, предназначенные для решения задач визуализации.

Предметом исследования являются методы и алгоритмы обработки информации и визуализации жидких сред в режиме реального времени.

Методы и средства исследований. При решении указанных задач использовались методы компьютерной графики, математические модели гидродинамики, методы теории вычислительных систем и параллельного программирования, методы системного анализа, принципы и технологии создания проблемно-ориентированных программных комплексов, характеризующиеся интегрированностью моделирующих, информационных и интерфейсных компонент, вычислительный эксперимент.

Степень достоверности результатов проведенных исследований обеспечивается корректностью проведенных математических преобразований, непротиворечивостью сформированных положений и выводов исследования, установленным ранее фактам теории и практики создания систем виртуальной реальности, построения многопроцессорных систем и повышения их эффективности, а также соответствием выводов теоретического исследования с результатами вычислительных экспериментов.

Научная новизна. Представленные в диссертационной работе результаты являются новыми и заключаются в следующем:

разработана гибридная модель представления жидких сред, основанная на совместном использовании имитационных подходов и гидродинамики сглаженных частиц;

разработан гибридный метод визуализации поверхностных волн для систем виртуальной реальности, использующий разработанную гибридную модель описания жидкой среды;

разработан метод синтеза поверхностного волнения и визуализации жидкой среды, основанный на обработке информации полученной при спектральном анализе волнения среды и предположении о фрактальной природе поверхностного волнения.

Практическая значимость.

Разработанные в диссертационной работе методы и алгоритмы обработки и визуализации информации, а также гибридная модель представления жидких сред использованы при проектировании и программной реализации усовершенствованной системы управления виртуальным окружением и визуализации водной поверхности в режиме реального времени, оптимизированной для работы в гетерогенных компьютерных системах.

Разработанная система может быть использована в различных симуляторах, системах проектирования, графических и мультимедиа приложениях, к которым могут относиться различные системы виртуальной реальности, компьютерные тренажры и игры.

Положения, выносимые на защиту:

1. Гибридная модель, метод представления и визуализации жидких сред для систем виртуальной реальности, основанные на методах вычислительной гидродинамики, обеспечивающие достаточную точность результатов моделирования;

2. Метод представления и алгоритм синтеза поверхностного волнения жидкой среды, адаптированный для выполнения в гетерогенных компьютерных системах;

3. Результаты вычислительных экспериментов по исследованию работоспособности разработанных алгоритмов, иллюстрирующие их преимущества при обработке информации по сравнению с используемыми в настоящее время;

4. Программная реализация разработанных алгоритмов для гибридных вычислительных систем на основе технологии OpenCL.

Апробация работы. Основные положения и результаты диссертационного исследования докладывались и обсуждались на международных научнотехнических конференциях: III Международная научно-техническая конференция «Высокопроизводительные вычисления (HPC-UA'13)» (КПИ, г.Киев, Украина, 2013г.); XXIII Международная научная конференция «Математические методы в технике и технологиях (ММТТ-23)» (СГТУ, г.Саратов, 2010г.); IV Международная научная конференция «Информационные технологии в науке, образовании и производстве (ИТНОПОГТУ, г.Орел, 2010г.); Международная научно-практическая конференция – «Молодежь и научно-технический прогресс» (БГТУ им.

Шухова, г.Губкин, 2009, 2010, 2011гг.), а так же заседаниях и семинарах кафедры ПОВТАС БГТУ им. Шухова.

Результаты работы использовались:

- При описании волновых процессов океана в разработанной системе визуализации программного комплекса «STAR Sea: Ocean Simulator».

Свидетельство о государственной регистрации программы для ЭВМ №2012619216.

- При выполнении НИОКР, реализованной при поддержке фонда содействия развития малых форм предпринимательства в научно-технической сфере (проект У.М.Н.И.К. «Разработка программного комплекса для моделирования и визуализации динамики движения жидкостей на высоко распараллеленных вычислительных системах»).

Публикации. По материалам диссертации опубликовано 9 печатных работ, в том числе 3 статьи в центральных рецензируемых изданиях, рекомендованных ВАК РФ для публикации основных научных результатов диссертаций. По теме исследования получено 1 свидетельство об официальной государственной регистрации программы для ЭВМ.

Структура и объем диссертации. Диссертационная работа состоит из введения, четырх глав, разбитых на параграфы, заключения и списка литературы. Содержание диссертации изложено на 131 странице основного текста, включающего 37 рисунков, 3 таблицы. Список литературы содержит 122 наименования.

СОДЕРЖАНИЕ РАБОТЫ

Во введении датся обоснование актуальности темы, описывается объект и предмет исследования, ставится цель и задачи диссертационной работы, показывается научная новизна и практическая значимость, перечислены места реализации и апробации результатов работы, а также приведено краткое содержание разделов диссертации.

Первая глава посвящена обзору основных понятий, особенностей и ограничений в системах виртуальной реальности, обзору и анализу существующих методов, алгоритмов и технологий создания систем виртуальной реальности. Проведн анализ существующих моделей и методов описания жидких сред в таких системах.

Рассматриваются особенности архитектур вычислительных систем, применяемых при создании систем виртуальной реальности. По результатам проведенного анализа обосновывается необходимость разработки новых методов и алгоритмов обработки информации при визуализации жидкостей, применимых в гетерогенных системах для повышения эффективности решения задач.

Во второй главе рассматривается разработанный метод синтеза поверхностного волнения жидкой среды на открытых пространствах.

Предлагается модель, сочетающая преимущества спектральных и фрактальных методов описания поверхностного волнения.

В основе предлагаемой модели лежат статистическая модель колебаний поверхности жидкой среды, описывающая гравитационные волны на основе данных получаемых с датчиков, и процедурная модель на основе шумовых функций Перлина, позволяющая имитировать капиллярные волны.

На форму волнового спектра влияют многие факторы, в частности, ветер и длина разгона волн. При неограниченном времени действия ветра и неограниченной длине разгона все спектральные составляющие достигают своего предельного развития. В этом случае энергетический спектр зависит только от скорости ветра. Спектр океанического волнения в зависимости от изменения пиковой частоты ( ) представлен на рисунке 2.

Рисунок 2. Энергетический спектр поверхностного волнения при Согласно данным многочисленных исследований, энергия всегда сосредоточена в узком диапазоне частот. В целях уменьшения объмов вычислений необходимо учитывать только наиболее существенную часть спектральной энергии волн.

В результате анализа большого объма информации, можно сделать вывод, что без существенных потерь в точности можно определить нижнюю границу спектра, с которым следует работать, величиной равной,а высокочастотную границу определить как.

Частота, соответствующая максимальному значению энергетического спектра, зависит от скорости ветра и может быть рассчитана по формуле где – скорость ветра. Здесь и далее в работе размерности физических величин считаются в системе СИ.

Основные статистические характеристики волн связаны с энергией волн E и многократно подтверждались экспериментальными данными где h – высота волны наибольшей повторяемости; – средняя высота волны;

D- дисперсия; - средняя высота одной трети наибольших высот волн в выборке; – средний период ветровых волн.

Используя полученные соотношения имеется возможность, на основе информации датчиков, по силе ветра, высоте волн, периоду волн или готовому спектру, синтезировать поверхностное волнение для систем виртуальной реальности в режиме реального времени.

В статистической модели высота волны – это случайная переменная горизонтальной позиции X(x,z) и времени f(X, t). Модель предполагает представление волновой функции в виде суперпозиции ряда гармоник с различными амплитудами и фазами.

Это дат возможность оперировать величинами амплитуд и фаз волн при использовании обратного быстрого преобразования Фурье (БПФ), которое позволяет оценивать следующую сумму Величина (, t) является комплексным числом, представляющим и амплитуду и фазу волны во время t. Так как используется дискретное преобразование Фурье, то есть только конечное число волн и позиций, входящих в уравнения и если размерность карты высот NxM, а размерность сетки равна величине L, то можно записать Существует простая зависимость между частотой и соответствующим волновым числом, являющимся амплитудой волнового вектора. Данная зависимость выражается следующим образом где g - ускорение свободного падения.

Поле амплитуд в частотной области в начальный момент времени выражается следующим образом где r и i - две независимых величины от Гауссового генератора случайных среднеквадратичным отклонением, – спектр Филлипса.

наблюдения за морем и может быть выражена в виде спектра, описывающего ветровое волнение поверхности жидкой среды В этом выражении L - максимально допустимая высота волны, равная U2/g и, таким образом, являющаяся результатом непрерывного воздействия ветра со скоростью U; - направление ветра; - направление волны (т.е.

нормализованная ); а - числовая константа влияющая на высоту волн.

Последний элемент -, указанный в выражении, позволяет создавать только частично сонаправленные ветру волны.

Из рисунка 3 видно, что спектр Филлипса хорошо аппроксимирует спектр представленный на рисунке 2. Основная часть энергии распределена в довольно узком диапазоне частот, значит для реалистичной визуализации поверхностного волнения можно использовать небольшое количество гармоник с частотами имеющими наибольшую мощность в данном спектре.

Рисунок 3. Океанический не направленный спектр волн, описываемый В результате вычисления f(X, t) по всей поверхности будет получена карта высот. Степень детализации зависит от размерности сетки карты поверхности (L) и, следовательно, количества выборок информации энергетического спектра.

Решить задачу снижения вычислительной сложности в данной работе предлагается, путм разделения задачи на две, а именно:

а) Описание динамики гравитационных волн описанным выше методом, выбирая гармоники с частотами несущими наибольшую энергию;

б) Синтез высокочастотных, капиллярных волн, используя шумовые функции Перлина.

В результате проведения множества экспериментов в ходе данного исследования, выявлено, что достаточно ограничить область для выборки Высота капиллярных волн учитывается в соответствии с выражениями (2-5), начиная с высоты волн, частоты которых расположены в энергетическом спектре на границе. Учт капиллярных волн важен, так как капиллярные волны дают начало развитию ряби, в значительной степени определяющей не только геометрию, но и цвет поверхности жидкой среды.

Для имитации капиллярных волн используется предположение о фрактальной природе поверхностного волнения. Предполагается, что волны обладают свойством статистического самоподобия. Поэтому для задачи визуализации предлагается имитировать капиллярные волны с помощью шума Перлина, взяв в качестве функции возмущения сумму нескольких циклоид Частота для каждой октавы определяется как 2i, где i-номер октавы.

Амплитуда равна, где – параметр стойкости, определяющий весовой коэффициент с которым i-ая октава влияет на итоговый результат.

Разработанный алгоритм синтеза поверхностного волнения предполагает, что полученную с использованием фрактального шума карту высот, необходимо объединить с данными, полученными с применением статистического метода на основе энергетического спектра Филлипса.

Так как высота колебаний задатся информацией полученной с датчиков и учитывается спектральным методом синтеза поверхностного волнения выборкой группы несущих частот, то высота волн синтезированных с помощью шума Перлина, должна определяться энергией спектра не учтнного первой моделью. Что должно быть выражено в виде коэффициента энергии волн на границе энергетического спектра согласно выражениям (2-5). Таким образом, итоговое значение высоты каждого элемента карты поверхности жидкости (узла сетки) рассчитывается по формуле где – некоторый коэффициент масштабирования.

поверхностного волнения приведена на рисунке 4.

Алгоритм предполагает возможность получения информации из внешних источников как в виде спектра, так и в виде набора данных о силе, направлении ветра и высоты 1/3 наибольших волн Hs. Параметры N и M определяют размер синтезируемой карты высот.

После получения информации, на первом шаге необходимо определить пиковую частоту энергетического спектра.

На втором шаге создатся три карты высот, необходимых для хранения информации о синтезированных поверхностях. После чего осуществляется выборка несущих частот, согласно которой создатся множество волновых векторов, учитывая зависимость (6).

На третьем шаге, учитывая коэффициент As, генерируется 8 гармоник шумовой функции Перлина, которые записываются в карту высот.

На четвртом шаге, используя метод обратного быстрого преобразования Фурье, создатся карта ветрового волнения.

На пятом шаге полученные карты высот попиксельно суммируются, после чего полученная карта высот может использоваться для визуализации развитой картины поверхностного волнения.

Пример применения разработанного гибридного подхода показан на рисунке 5. Изображение 5.а показывает карту поверхности созданную по гармоникам на основе спектра Филлипса, на изображении 5.б показана карта поверхности построенная по 16 гармоникам спектра Филлипса, а изображение 5.с показывает работу разработанного гибридного метода при использовании 8 гармоник спектра Филлипса и 8 гармоник процедурно сгенерированной поверхности на основе шумовых функций Перлина.

Определение амплитуды высокочастотных волн Вычисление шумовой функции для каждой точки Х Используя метод БПФ вычисляется высота волны в Рисунок 4. Блок-схема разработанного алгоритма синтеза поверхностного Рисунок 5. Формирование волнового волнения с помощью спектра Филлипса На рисунке 6 изображены 3 графика демонстрирующие производительность алгоритмов в зависимости от размерности сетки.

Рисунок 6. Сравнение скорости работы разработанного гибридного метода с известным статистическим БПФ-методом Преимущество разработанного гибридного метода, тем больше над известным методом Тессендорфа (на рисунке БПФ-метод), чем больше размерность сетки.

В третьей главе рассматривается гибридная модель и метод представления жидких сред, основанные на совместном использовании имитационных подходов и метода SPH, описывающего объм жидкой среды и позволяющего визуализировать и принимать во внимание течения, что оказывает существенное влияние на гибкость и настраиваемось различных тренажров, отказавшись от создания сценариев поведения судна вручную.

Жидкость считаем абсолютно несжимаемой, динамика среды рассчитывается с использованием осредненных по Рейнольдсу уравнений Навье-Стокса где -оператор набла, -лапласиан, t–время, –эффективная вязкость, плотность, -давление, -поле скоростей, -поле внешних сил. Для решения используется метод проекции, основанный на принципе расщепления неизвестных. Метод SPH позволяет представить среду в виде множества дискретных элементов и является интерполяционным методом, в котором распределение физических величин вычисляется как где -объм интегрирования содержащий точку r, -непрерывная функция радиус-вектора, -дельта-функция Дирака.

Аппроксимируем функцию (15) с заменой дельта-функции на ядро сглаживания где h – длина сглаживания. Тогда значение любой физической величины А для частицы в точке r можно найти по формуле где -масса частицы i, - плотность частицы i, - значение величины A для частицы i, h – длина сглаживания, W – сглаживающая функция ядра.

Градиент функции через градиент ядра сглаживания выражается формулой где -оператор набла. В терминах SPH, при внесении плотности под знак градиента, для получения аппроксимации по частицам Теперь можно найти внутренние силы взаимодействия, связанные с градиентом давления и диффузией. Градиент давления может быть выражен следующим образом А дивергенция скорости как Вязкость определяется следующим образом где - параметр, позволяющий избежать деления на ноль.

Для описания динамики жидкости длина шага по времени выбирается с соблюдением условия Куранта где сила на единицу массы, эквивалентной величине ускорения частиц и опорная скорость, которая соответствует максимальной скорости жидкости для метода в данной работе, что позволяет при работе с достаточно большими числами h, применить метод SPH в системах виртуальной реальности. Для аппроксимации уравнения Пуассона применяется формула Решается методом Bi-CGSTAB.

Для данного исследования предложена функция ядра сглаживания (24), наилучшим образом подходящая для решения задачи приближенного описания динамики жидкой среды в системах виртуальной реальности и предложены отдельные функции для расчта сил давления (25) и вязкости (26) Для получения изоповерхности (рисунок 7) применяется следующий подход. У частиц формирующих свободную поверхность число соседних частиц меньше чем, чем в среднем. Это свойство используется для их определения. Дивергенция от позиции частицы в SPH выражается, как Рассчитывается получающееся значение для каждой частицы в среде.

Рисунок 7. Описание динамики жидкости с помощью SPH-метода и получение Критерием, по которому частица может потенциально являться поверхностной, будет число равное 0.75 от среднего или меньше. Такой подход позволяет определить потенциальное множество поверхностных частиц. Для точного определения используется следующее условие где i-рассматриваемая частица, j-множество соседних частиц, - вектор нормали i-ой частицы, - расстояние между i-ой и j-ой частицами, угол равен /6.

Так как волны различной частоты имеют различную скорость распространения и могут иметь различную природу возникновения, задачу визуализации требуется разделить по процессам. В рамках предлагаемой модели, поверхностные волны могут быть представлены в виде суммы компонент, предусматривающих обработку различной информации где X - горизонтальная координата точки (x,z), высоту которой мы оцениваем; - высота изо-поверхности в точке Х, построенная в результате расчтов динамики жидкости методом SPH; (, t) - комплексное число, представляющее и амплитуду и фазу волны во время t; n – количество гармоник выбираемых из спектра описывающего ветровое волнение; M – количество октав шума применяемого для имитации ряби; – параметр стойкости, определяющий весовой коэффициент с которым i-ая октава шума влияет на итоговый результат. Параметры, – коэффициенты масштабирования, позволяющие учитывать степень вклада в итог визуализации, соответственно SPH метода описания среды, статистического метода описания ветрового волнения поверхности среды и шумовой функции.

Учитывая тот факт, что внутренние волны и течения гораздо медленнее поверхностных волн, то обновлять эти данные не нужно с высокой частотой обновления каждого кадра и шаг может быть увеличен. Реализован алгоритм асинхронной обработки информации методом SPH. Схема гибридного метода описания динамики и визуализации жидких сред приведена на рисунке 8.

Рисунок 8. Алгоритм асинхронной обработки информации при описании жидкой среды методом SPH и методами имитации поверхностного волнения Для применения такого метода в системах виртуальной реальности, когда есть ограничение на время формирования требуемых данных и визуализацию в 30мс, чтобы обеспечить плавность анимации необходимо фиксировать шаг синтеза поверхностного волнения длиной одного кадра.

Такой подход, использования метода SPH совместно с разработанным методом синтеза поверхностного волнения, позволяет создавать полностью интерактивные приложения для морских симуляторов и тренажров, обеспечивая взаимодействие пользователя с жидкой средой. При этом значительно увеличивается реалистичность симуляции, что существенно улучшает качество обучения специалистов и обеспечивает возможность обратной связи систем реализующих данную модель с другими системами моделирования виртуального окружения, вместо использования имитационных систем сценариев.

Четвртая глава посвящена рассмотрению разработанной структуры программного обеспечения, реализующего работу предложенных алгоритмов и сравнительному анализу эффективности предложенной модели по сравнению с известными решениями.

Для визуализации масштабных виртуальных сцен, необходимо с высокой точностью описывать только участки среды, где учт мелких деталей действительно нужен. На рисунке 9.а показана сетка поверхности жидкой среды. Если позиция наблюдателя находится в центре, то поверхность можно разделить на сектора, которые могут находиться в одном из трх состояний:

1) Не активен - сектор расположен достаточно далеко и в такой области необходимо выполнять вычисления на сетке с низким разрешением.

2) Готов – сектор в ближайшее время может стать видимым, что требует выполнения всех вычислений, но без визуализации.

3) Активен - сектор видим и должен быть визуализированы вне зависимости от того, просчитана ли модель поведения жидкости методом SPH или нет.

Рисунок 9. Структура разбиения поверхности жидкой среды на сектора Разработанная модель и гибридный метод описания жидкой среды дружествен к представленному подходу с пространственным разбиением поверхности на участки, изображнному на рисунке 9.а. Использование такой структуры позволяет вычислять состояние среды независимо для каждого отдельного участка (рисунок 9.б), а также эффективно разложить задачу на составляющие по процессам (рисунок 9.в).

В ходе исследований была разработана платформа «StarSea: Ocean Simulator», имеющая модульную структуру и предназначенная для эффективного использования ресурсов гетерогенных вычислительных систем.

Менеджер задач обеспечивает передачу сообщений о командах или событиях между подсистемами. Все подсистемы формируют список задач, организованных в очередь, чтобы в дальнейшем иметь возможность быть выполненными (рисунок 10).

Рисунок 10. Организация процесса многопоточных вычислений Синхронизация доступа к подзадачам осуществляется только при записи/чтении очереди задач. Очередь становится разделяемым ресурсом.

Проведенные исследования (таблица 1) показали, что прирост производительности составляет до 15% по сравнению с lock-based методиками при использовании разработанного подхода. Преимущество достигается за счт того, что предложенная модель предполагает независимость расчтов отдельных е компонент.

Таблица 1.Анализ эффективности распараллеливания предложенного подхода Результаты сравнительного тестирования показывают, что подобная реализация накладывает лишь небольшие издержки синхронизации (рисунок 11). В следующем эксперименте задействовано 8 CPU исполнителей и 2 GPU исполнителя. Проверялась эффективность масштабирования спектрального метода Тессендорфа (FFT), разработанного гибридного метода и SPH-подхода с числом частиц в 1,5 раза большем, чем в гибридном. Вызов восьми CPU потоков из пула налагает издержки не более 2 миллисекунд. Увеличение издержек при использовании GPU в качестве девятого и десятого исполнителей связано с издержками передачи данных через шину PCI-E.

Время планирования, сек Рисунок 11. Среднее время планирования единственной задачи в зависимости Как показал эксперимент, метод SPH не очень хорошо масштабируется в гетерогенной среде, когда требуется перемещать большие объмы взаимосвязанной информации в память различных вычислительных узлов.

Гибридный метод имеет существенное преимущество, так как не требует большого числа частиц для реалистичной визуализации.

В следующем эксперименте сравнивались три разработанных алгоритма построения и визуализации поверхности жидкой среды. Алгоритмы были протестированы на двух тестовых вычислительных системах.

Первая система состоит из CPU 2.4GHz Intel Core 2 Quad Q6600 четырех ядерный процессор с четырьмя гигабайтами RAM, системной шиной пропускной способностью ~18 GB/s, и графическим ускорителем AMD HD 4850 (~1 TFLOPS в операциях с 32 битными числами).

Вторая система состоит из CPU 3.3GHz Intel Core i5-3550 - четырех ядерный процессор с 8 гигабайтами RAM, системная шина ~22 GB/s, и AMD HD7850 2Gb VRAM (1,76 TFLOPS). Результаты представлены на рисунке 12.

Больший перерасход памяти в гетерогенной среде (процессор Core i5 и вычислительных блоков и необходимостью дублировать большее количество информации, но оправдан и позволяет получить существенный прирост производительности.

В таблице 2 показано количество кадров в секунду выполняемых при визуализации поверхности океана с использованием разработанного гибридного метода (Hb). Геометрическая сетка имеет размерность 256х вершин, а среда описывается набором 100 000 частиц для метода SPH.

Используется вторая тестовая система, так же для сравнения приведены FFTметод и SPH, использующий 1 миллион частиц. Тестовая система №2.

Рост производительности, Рисунок 12. Результаты работы разработанного метода при реализации в Как видно из таблицы, разработанный метод дат возможность используя преимущества методов, основанных на моделях вычислительной гидродинамики, в режиме реального времени реалистично визуализировать жидкие среды, за счт разработанного метода синтеза поверхностного волнения.

Таблица 2. Анализ эффективности гибридного подхода

Hb FFT SPH Hb FFT SPH Hb FFT SPH

поверхности масштабируется, эффективен в гетерогенной среде и позволяет использовать произвольное количество потоков исполнения.

В заключении сформулированы основные результаты диссертационной работы.

ОСНОВНЫЕ РЕЗУЛЬТАТЫ РАБОТЫ

В результате выполненных теоретических и практических исследований получены следующие результаты:

1. Выполненный анализ позволил классифицировать существующие методы синтеза, представления и визуализации жидких сред, применимые в системах виртуальной реальности; показал актуальность и значимость диссертационной работы, позволил наметить возможные направления получения новых методов и алгоритмов. Отмечены достоинства, недостатки и перспективы развития существующих методов и алгоритмов;

2. Разработан гибридный метод описания динамики и визуализации жидкостей с использованием методов вычислительной гидродинамики и имитационных методов синтеза поверхностного волнения. Предложена комплексная вычислительная модель для систем виртуальной реальности, включающая численные алгоритмы, обеспечивающие достаточную точность результатов описания жидкой среды при визуализации в режиме реального времени.

3. На основе предложенных методов и алгоритмов анализа, трансформации и визуализации информации разработан программный комплекс для исследования и проверки эффективности предложенных модели и алгоритмов описания динамики жидких сред, позволяющих обеспечить более глубокие параллельные вычисления в гетерогенных системах.

4. Получены результаты решения тестовых и модельных задач, в ходе которых были определены возможности разработанных алгоритмов и диапазон их применения. Была проведена проверка эффективности предложенных методов на примере представления и визуализации жидкости со свободными границами. Доказана возможность повышения эффективности функционирования компьютерного тренажера за счт использования разработанных подходов.

С применением нового подхода получена возможность реалистичного синтеза поверхности и описания динамики потоков жидкости в реальном масштабе времени, что невозможно сделать используя прочие подходы.

ОСНОВНЫЕ ПУБЛИКАЦИИ ПО ТЕМЕ ДИССЕРТАЦИИ

1. Торгонин Е.Ю. О распараллеливании вычислительного процесса формирования поверхности жидкости в режиме реального времени.

//Научные ведомости БелГУ. Серия «История. Политология. Экономика.

Информатика». Выпуск 18/1. - Белгород: Изд-во НИУ БелГУ, 2011. –С.77– 2. Торгонин Е.Ю. Гибридный метод визуализации поверхностных волн для систем виртуальной реальности // Глобальный научный потенциал.

Выпуск 11(20). - Санкт-Петербург: ТМБпринт, 2012. –С.115–120.

3. Торгонин Е.Ю. О применении методов SPH для моделирования жидких сред в системах виртуальной реальности //В мире научных открытий.

Серия «Математика. Механика. Информатика». Выпуск 12.1. - Красноярск:

Изд-во Научно-инновационный центр, 2012. –С.259–272.

Публикации в сборниках научных трудов и материалов 4. Торгонин Е.Ю. Методика моделирования динамики движения жидкостей на высоко распараллеленных вычислительных системах //Информационные технологии в науке, образовании и производстве.

ИТНОП-2010: материалы IV-й Международной научно-технической конференции. – Орл: ОрелГТУ, 2010. –Т.3. –С. 318–322.

5. Торгонин Е.Ю. Моделирование динамики движения жидкостей и оптика на высоко распараллеленных вычислительных системах //Математические методы в технике и технологиях – ММТТ-23: сб. трудов XXIII Междунар.

науч. конф. -Саратов: Сарат.гос.техн.ун-т, 2010. –Т.9. –С.154–157.

6. Торгонин Е.Ю. Компьютерный морской симулятор для тренажров навигации судов //Сборник докладов участников в конкурсе БГТУ им.

В.Г.Шухова по программе «Участник молоджного научноинновационного конкурса». –Белгород: Изд-во БГТУ им. В.Г.Шухова, 2010. –С.28–32.

7. Торгонин Е.Ю. Использование многопроцессорных систем в моделировании динамики движения жидкостей //Наука и молоджь в начале нового столетия: Материалы III Международной научнопрактической конференции студентов, аспирантов и молодых учных. – Губкин: ИП Уваров В.М.,2010. –С.100–104.

8. Торгонин Е.Ю. О методах моделирования и геометрического представления поверхностных волн //Молоджь и научно-технический прогресс: Сборник докладов международной научно-практической конференции студентов, аспирантов и молодых учных. / Сост. Т.В.

Абрамова, А.П. Гаевой, В.М. Уваров [и др.]. –Губкин: ООО «Айкью», 2011. –Часть I. –С.257–261.

9. Торгонин Е.Ю. Обработка информации в гетерогенной среде при визуализации моря для компьютерных симуляторов //Материалы III Международной научно-технической конференции «Высокопроизводительные вычисления (HPC-UA'13)». –Киев, 2013. –С.402–407.

Свидетельства о государственной регистрации программ для ЭВМ 1. Свидетельство о государственной регистрации программы для ЭВМ №2012619216. Программный комплекс для моделирования динамики жидких сред в многопроцессорных вычислительных системах. / Е.Ю.

Торгонин – Зарегистрировано в Реестре программ для ЭВМ Федеральной службы по интеллектуальной собственности, патентам и товарным знакам (Роспатент) от 12 октября 2012 г.



 
Похожие работы:

«Пашковский Александр Владимирович ЧИСЛЕННО-АНАЛИТИЧЕСКИЕ МЕТОДЫ СТАНДАРТНЫХ ЭЛЕМЕНТОВ ДЛЯ МОДЕЛИРОВАНИЯ СТАЦИОНАРНЫХ ФИЗИЧЕСКИХ ПОЛЕЙ В ЛИНЕЙНЫХ КУСОЧНООДНОРОДНЫХ И НЕЛИНЕЙНЫХ СРЕДАХ 05.13.18 – Математическое моделирование, численные методы и комплексы программ Автореферат диссертации на соискание ученой степени доктора технических наук Новочеркасск – 2014 2 Работа выполнена в федеральном государственном бюджетном образовательном учреждении высшего профессионального...»

«Лапшин Виктор Александрович Математические модели динамики срочной структуры процентных ставок, учитывающие качественные свойства рынка 05.13.18 – Математическое моделирование, численные методы и комплексы программ АВТОРЕФЕРАТ диссертации на соискание ученой степени кандидата физико-математических наук Москва – 2010 Работа выполнена в Московском государственном...»

«Трифонов Сергей Владимирович ОПТИМИЗАЦИЯ РАБОТЫ МАЛОМОЩНОЙ БЕСПРОВОДНОЙ СЕНСОРНОЙ СЕТИ НА БАЗЕ ЕЁ ИМИТАЦИОННОЙ МОДЕЛИ Специальность 05.13.18 – Математическое моделирование, численные методы и комплексы программ. АВТОРЕФЕРАТ диссертации на соискание ученой степени кандидата физико-математических наук Москва – 2013 2 Работа выполнена на кафедре вычислительной математики Московского физико-технического института (государственного университета) Научный руководитель : кандидат...»

«Фиалко Надежда Сергеевна МОДЕЛИРОВАНИЕ ПЕРЕНОСА ЗАРЯДА В ДНК Специальность: 05.13.18 – математическое моделирование, численные методы и комплексы программ Автореферат диссертации на соискание ученой степени кандидата физико-математических наук Пущино 2007 Работа выполнена в Институте математических проблем биологии РАН (г. Пущино) Научный руководитель : доктор физико-математических наук, профессор Лахно Виктор Дмитриевич Официальные доктор физико-математических наук,...»

«КОЧЕРГИН ГЛЕБ АЛЕКСАНДРОВИЧ МОДЕЛИРОВАНИЕ ОДНОРОДНЫХ ТЕРРИТОРИАЛЬНЫХ ЗОН НА ОСНОВЕ МНОГОМЕРНОЙ КЛАСТЕРИЗАЦИИ И ГИС-АНАЛИЗА В УСЛОВИЯХ МАЛОГО ОБЪЕМА ДАННЫХ Специальность 05.13.18 – Математическое моделирование, численные методы и комплексы программ АВТОРЕФЕРАТ диссертации на соискание ученой степени кандидата технических наук Ханты-Мансийск – 2011 Работа выполнена в Автономном учреждении Ханты-Мансийского автономного округа – Югры “Югорский научно-исследовательский институт...»

«Шопырин Данил Геннадьевич Методы объектно-ориентированного проектирования и реализации программного обеспечения реактивных систем Специальность 05.13.13 – Телекоммуникационные системы и компьютерные сети АВТОРЕФЕРАТ диссертации на соискание ученой степени кандидата технических наук Санкт-Петербург 2005 2 Работа выполнена в Санкт-Петербургском государственном университете информационных технологий, механики и оптики доктор технических наук, профессор Научный руководитель :...»

«Грибанова Екатерина Борисовна АЛГОРИТМЫ И КОМПЛЕКС ПРОГРАММ ДЛЯ РЕШЕНИЯ ЗАДАЧ ИМИТАЦИОННОГО МОДЕЛИРОВАНИЯ ОБЪЕКТОВ ПРИКЛАДНОЙ ЭКОНОМИКИ Специальность 05.13.18 Математическое моделирование, численные методы и комплексы программ АВТОРЕФЕРАТ диссертации на соискание ученой степени кандидата технических наук Томск – D Работа выполнена в Томском государственном университете систем управления и радиоэлектроники. Научный руководитель : доктор технических наук, профессор Мицель Артур...»

«Иванов Александр Сергеевич РАЗРАБОТКА АЛГОРИТМОВ И ПРОГРАММНО-АППАРАТНЫХ СРЕДСТВ ЦЕНТРАЛИЗОВАННОГО УЧЕТА ЭНЕРГОЗАТРАТ ЛОКАЛЬНОЙ ИНФРАСТРУКТУРЫ (05.13.01 – Системный анализ, управление и обработка информации) АВТОРЕФЕРАТ диссертации на соискание ученой степени кандидата технических наук Москва 2006 Работа выполнена в Московском государственном институте электронной техники (техническом университете) на кафедре радиоэлектроники Научный руководитель : Лауреат Государственной...»

«Жиркова Елизавета Юрьевна СОВЕРШЕНСТВОВАНИЕ СИСТЕМЫ УПРАВЛЕНИЯ ЭФФЕКТИВНОСТЬЮ РАЗВИТИЯ ГИДРОМЕЛИОРАТИВНЫХ КОМПЛЕКСОВ 05.13.10 – Управление в социальных и экономических системах (экономические наук и) АВТОРЕФЕРАТ диссертации на соискание ученой степени кандидата экономических наук Ростов-на-Дону – 2008 Диссертационная работа выполнена в ГОУ ВПО Южно-Российский государственный технический университет (Новочеркасский политехнический институт) на кафедре Государственное и...»

«КОТЕЛЬНИКОВ СЕРГЕЙ СЕРГЕЕВИЧ ОПТИМИЗАЦИЯ ТЕХНИЧЕСКИХ И ТЕХНОЛОГИЧЕСКИХ ПАРАМЕТРОВ ЖЕЛЕЗНОДОРОЖНЫХ СТАНЦИЙ Специальность 05.13.01 – Системный анализ, управление и обработка информации (промышленность) АВТОРЕФЕРАТ диссертации на соискание ученой степени кандидата технических наук ИРКУТСК – 2012 Работа выполнена в Федеральном государственном бюджетном образовательном учреждении высшего профессионального образования Иркутский государственный университет путей сообщения (ФГБОУ ВПО...»

«ЖЕРТОВСКАЯ ЕЛЕНА ВЯЧЕСЛАВОВНА РАЗРАБОТКА КОМПЛЕКСНОЙ МЕТОДИКИ ВЫБОРА И ПРИНЯТИЯ УПРАВЛЕНЧЕСКИХ РЕШЕНИЙ В ОБЛАСТИ РАЗВИТИЯ ТУРИСТСКОГО КОМПЛЕКСА В СОЦИАЛЬНО-ЭКОНОМИЧЕСКОЙ СИСТЕМЕ (НА ПРИМЕРЕ МУНИЦИПАЛЬНОГО ОБРАЗОВАНИЯ Г.ТАГАНРОГА) Специальность: 05.13.10 – Управление в социальных и экономических системах (экономические наук и). АВТОРЕФЕРАТ диссертации на соискание ученой степени кандидата экономических наук Ростов-на-Дону - Диссертация выполнена на кафедре государственного и...»

«ИВАЩУК ОЛЬГА АЛЕКСАНДРОВНА ТЕОРЕТИЧЕСКИЕ ОСНОВЫ ПОСТРОЕНИЯ АВТОМАТИЗИРОВАННЫХ СИСТЕМ УПРАВЛЕНИЯ ЭКОЛОГИЧЕСКОЙ БЕЗОПАСНОСТЬЮ ПРОМЫШЛЕННОТРАНСПОРТНОГО КОМПЛЕКСА Специальность: 05.13.06 – Автоматизация и управление технологическими процессами и производствами (промышленность) АВТОРЕФЕРАТ диссертации на соискание ученой степени доктора технических наук Орел 2009 2 Работа выполнена на кафедре Информационные системы Государственного образовательного учреждения высшего...»

«ПРОХОРОВ Евгений Игоревич Адаптивная двухфазная схема решения задачи структура – свойство Специальность 05.13.17 – теоретические основы информатики АВТОРЕФЕРАТ диссертации на соискание ученой степени кандидата физико-математических наук Москва – 2014 Работа выполнена на кафедре вычислительной математики механикоматематического факультета ФГБОУ ВПО Московский государственный университет имени М.В....»

«КАГРАМАНЯН ЭМИЛЬ РУДОЛЬФОВИЧ РАЗРАБОТКА МЕТОДОВ И МОДЕЛЕЙ ДЛЯ ХАРАКТЕРИЗАЦИИ СЛОЖНО-ФУНКЦИОНАЛЬНЫХ БЛОКОВ КМОП СБИС С УЧЕТОМ ВАРИАЦИЙ ПАРАМЕТРОВ ТРАНЗИСТОРОВ Специальность: 05.13.12 - системы автоматизации проектирования АВТОРЕФЕРАТ диссертации на соискание ученой степени кандидата технических наук Москва – 2009 Работа выполнена на кафедре ПКИМС Московского государственного института электронной техники (технического университета). Научный руководитель : доктор технических...»

«Гильмуллин Ринат Абрекович МАТЕМАТИЧЕСКОЕ МОДЕЛИРОВАНИЕ В МНОГОЯЗЫКОВЫХ СИСТЕМАХ ОБРАБОТКИ ДАННЫХ НА ОСНОВЕ АВТОМАТОВ КОНЕЧНЫХ СОСТОЯНИЙ 05.13.11 - Математическое и программное обеспечение вычислительных машин, комплексов и компьютерных сетей АВТОРЕФЕРАТ диссертации на соискание ученой степени кандидата физико-математических наук Казань – 2009 Работа выполнена на кафедре теоретической кибернетики государственного образовательного учреждения высшего профессионального...»

«Лизунов Александр Александрович Прецизионные преобразователи первичной информации инерциальных систем управления динамичными объектами специального назначения Специальность 05.13.05 – Элементы и устройства вычислительной техники и систем управления Автореферат диссертации на соискание ученой степени кандидата технических наук Москва 2011 г. Работа выполнена на кафедре Системы автоматического и интеллектуального управления Московского авиационного института (государственного...»

«Колесникова Александрина Владимировна МГД – модели гемодинамики и движения столбика эритроцитов в переменном магнитном поле 05.13.18 – Математическое моделирование, численные методы и комплексы программ Автореферат диссертации на соискание ученой степени кандидата физико-математических наук Томск – 2007 Работа выполнена в Томском государственном университете Научный руководитель : доктор физико-математических наук, профессор Бубенчиков Алексей Михайлович Научный консультант :...»

«Жегуло Ольга Анатольевна ИССЛЕДОВАНИЕ И РЕАЛИЗАЦИЯ НЕПРОЦЕДУРНЫХ ПРЕОБРАЗОВАНИЙ ПРОГРАММ ДЛЯ ПОСТРОЕНИЯ РАСШИРЯЕМОЙ СИСТЕМЫ РАСПАРАЛЛЕЛИВАНИЯ 05.13.11 — Математическое и программное обеспечение вычислительных машин, комплексов, систем и сетей АВТОРЕФЕРАТ диссертации на соискание учёной степени кандидата технических наук Ростов-на-Дону – 2007 3 Работа выполнена на кафедре информатики и вычислительного эксперимента факультета математики, механики и компьютерных наук Южного...»

«МАЛКОВ Артемий Сергеевич МАТЕМАТИЧЕСКОЕ МОДЕЛИРОВАНИЕ РАЗВИТИЯ АГРАРНЫХ ОБЩЕСТВ Специальность 05.13.18 – Математическое моделирование, численные методы и комплексы программ АВТОРЕФЕРАТ диссертации на соискание ученой степени кандидата физико-математических наук Москва – 2005 Работа выполнена в Ордена Ленина Институте прикладной математики им. М.В. Келдыша Российской академии наук Научные...»

«Стасенко Александр Павлович МОДЕЛИ И РЕАЛИЗАЦИЯ ТРАНСЛИРУЮЩИХ КОМПОНЕНТОВ СИСТЕМЫ ФУНКЦИОНАЛЬНОГО ПРОГРАММИРОВАНИЯ 05.13.11 – математическое и программное обеспечение вычислительных машин, комплексов и компьютерных сетей АВТОРЕФЕРАТ диссертации на соискание ученой степени кандидата физико-математических наук Новосибирск 2009 Работа выполнена в Институте систем информатики имени А. П....»






 
© 2013 www.diss.seluk.ru - «Бесплатная электронная библиотека - Авторефераты, Диссертации, Монографии, Методички, учебные программы»

Материалы этого сайта размещены для ознакомления, все права принадлежат их авторам.
Если Вы не согласны с тем, что Ваш материал размещён на этом сайте, пожалуйста, напишите нам, мы в течении 1-2 рабочих дней удалим его.